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SPDY: Accurate Pruning with speedup guarantees

ICML’22
Elias Frantar; Dan Alistarh



Motivation
• Unstructured Pruning (Weight Pruning)

• Previous Work: 
• Minimize the number of remaining weights

• This Work
• Minimize the inference time

• Goal:
• Automatically determines layer-wise sparsity

• Methods:
• Dynamic Programming
• Local Search



Introduction
• Pruning Methods:
• Structured Pruning
• Unstructured Pruning

• Runtime Side, unstructured sparsity is important:
• Algorithms provides speedup on CPUs, GPUs or Specialized hardware.
• Commodity CPUs, AMD models only cares sparsity instead of quantization. 

• Key issue of previous unstructured pruning works:
• Not consider the acceleration methods.



Introduction
• Contribution:
• learned efficient Sparsity Profiles via Dynamic programming search (SPDY). Determine 

layer-wise sparsity to achieve a desired speedup. 
• First, optimization problem à dynamic programming solver. 
• Second, learns the layer-wise error-scores automatically, based on calibration dataset. 



Optimization Problem
• Constrained Optimization Problem:

• Assumption:
• Overall execution time = Sum of the individual layer runtimes. 
• Pruning a layer    to sparsity  ultimately incurs some model error          , which is 

additive.

• Integer linear program (ILP)

• However, NP-hard and requires exponential time to solve. 



Efficient Solver
• Make time t as an integer-value

• Dynamic Programming

• Recursion:



Error Metric 
• Previous: 
• Weight Magnitude ; Squared Weight Magnitude ; Loss change

• Ours: “learning” or “search”

• How to check optimal ”c”?
T=10,000, |S| = 42, L = 52 for ResNet50.



Quickly Check the Quality of a Sparsity Profile
• This database stores for each layer and each sparsity the “reconstruction” of 

the remaining weights after pruning. 

• First, we query the database for the corresponding reconstructed weights of 
each layer, each at its target sparsity. 

• Second, we “stitch together” the resulting model from the reconstructed 
weights, and evaluate it on a given small validation set.



Determine sensitivity values C.



Overall 

T=10,000, |S| = 42, L = 52 for ResNet50.



Result



Sparse Double Descent: Where Network Pruning 
Aggravates Overfitting

ICML’22
Zheng He, et al. 



Motivation
• Previous work:
• Increase the model sparsity will prevents the overfitting. 

• Sparse Double Descent: 
• Increase the model sparsity, test performance first gets worse (overfitting) then gets 

better (relieved overfitting).



Introduction
• Overparameterized DNNs are “good at” overfitting. 

• In practice, DNNs often achieve higher generalization than smaller models. 

• Recent, Deep Double Descent:
• Model capacity increases, test performance first gets better then worse (overfitting) then gets 

better (relieved overfitting).

• Contribution: 
• Sparse Double Descent. 

• Increase the model sparsity, test performance first gets worse (overfitting) then gets better (relieved 
overfitting).

• L2 learning distance
• Contrary to the lotter ticket hypothesis.



Sparse Double Descent



Four phases of model sparsity
1. Low sparsity:

Pruned network = dense model

2. Critical phase: 
Severe Overfitting 

3. Sweet Phase:
Boosted accuracy

4. Collapsed Phase:
Accuracy Drops



Why Sparse Double Descent Occurs
• The Learning Distance Hypothesis for Sparse Double Descent

• L2 distance:

• Learning distance correlates 

the test accuracy



Lottery tickets may not win at all time

• Reinitialized models could beat 

lottery ticket models at the same 

sparsity but different phases.

• Due to the Sparse Double Descent

• Add noise à fit noise. 



CHEX: CHannel EXploration for CNN Model Compression

CVPR’22
Zejiang Hou, et al. 



Motivation
• Structured Pruning or Dense-to-Sparse training.

• Training from scratch

• Prune and regrow the channels throughout the training process. 
• tackle the channel pruning problem via a well-known column subset selection (CSS) 

formulation



Introduction
• Previous pruning: 
• pre-training a large model until convergence, 
• pruning a few unimportant channels by the pre-defined criterion
• finetuning the pruned model to restore accuracy. 

• long training time

• In this work, they dynamically adjust the importance of the channels via a 
periodic pruning and regrowing process

• allows the prematurely pruned channels to be recovered and prevents the 
model from losing the representation ability early in the training process. 



Overview



Pruning Stage1: Reallocate number of channels
• learnable scaling factors in batch normalization (BN).

• ranking all scaling factors in descending order and preserving the top 1 − S 
percent of the channels.



Pruning Stage2: CCS-Criterion
• Leverage score

• Information of N-th row.

• U11 and U12 present the 

importance of the row with m11, m12. 



Regrow Stage1: scheduler of number of regrown channels

• Cosine decay scheduler to gradually reduce the number of regrown channels

where δ0 is the initial regrowing factor, Tmax denotes the total exploration 
steps, and ∆T represents the frequency to invoke the pruning-regrowing steps.



Regrow Stage2: determine the channels to regrow
• Orthogonal projection formula:

• A higher orthogonality value indicates that the channel is harder to 
approximate by others, and may have a better chance to be retained in the CSS 
pruning stage of the future steps.

• Be sampled with a relatively higher probability



Regrow Stage3: assign weight 

• Most recently used (MRU) parameters, which are the last values before they 
are pruned



Overall algorithm



Results


