
Efficient Deep Learning
Reading Group

02/26/2023

Yang Sui

SPDY: Accurate Pruning with speedup guarantees

ICML’22
Elias Frantar; Dan Alistarh

Motivation
• Unstructured Pruning (Weight Pruning)

• Previous Work:
• Minimize the number of remaining weights

• This Work
• Minimize the inference time

• Goal:
• Automatically determines layer-wise sparsity

• Methods:
• Dynamic Programming
• Local Search

Introduction
• Pruning Methods:
• Structured Pruning
• Unstructured Pruning

• Runtime Side, unstructured sparsity is important:
• Algorithms provides speedup on CPUs, GPUs or Specialized hardware.
• Commodity CPUs, AMD models only cares sparsity instead of quantization.

• Key issue of previous unstructured pruning works:
• Not consider the acceleration methods.

Introduction
• Contribution:
• learned efficient Sparsity Profiles via Dynamic programming search (SPDY). Determine

layer-wise sparsity to achieve a desired speedup.
• First, optimization problem à dynamic programming solver.
• Second, learns the layer-wise error-scores automatically, based on calibration dataset.

Optimization Problem
• Constrained Optimization Problem:

• Assumption:
• Overall execution time = Sum of the individual layer runtimes.
• Pruning a layer to sparsity ultimately incurs some model error , which is

additive.

• Integer linear program (ILP)

• However, NP-hard and requires exponential time to solve.

Efficient Solver
• Make time t as an integer-value

• Dynamic Programming

• Recursion:

Error Metric
• Previous:
• Weight Magnitude ; Squared Weight Magnitude ; Loss change

• Ours: “learning” or “search”

• How to check optimal ”c”?
T=10,000, |S| = 42, L = 52 for ResNet50.

Quickly Check the Quality of a Sparsity Profile
• This database stores for each layer and each sparsity the “reconstruction” of

the remaining weights after pruning.

• First, we query the database for the corresponding reconstructed weights of
each layer, each at its target sparsity.

• Second, we “stitch together” the resulting model from the reconstructed
weights, and evaluate it on a given small validation set.

Determine sensitivity values C.

Overall

T=10,000, |S| = 42, L = 52 for ResNet50.

Result

Sparse Double Descent: Where Network Pruning
Aggravates Overfitting

ICML’22
Zheng He, et al.

Motivation
• Previous work:
• Increase the model sparsity will prevents the overfitting.

• Sparse Double Descent:
• Increase the model sparsity, test performance first gets worse (overfitting) then gets

better (relieved overfitting).

Introduction
• Overparameterized DNNs are “good at” overfitting.

• In practice, DNNs often achieve higher generalization than smaller models.

• Recent, Deep Double Descent:
• Model capacity increases, test performance first gets better then worse (overfitting) then gets

better (relieved overfitting).

• Contribution:
• Sparse Double Descent.

• Increase the model sparsity, test performance first gets worse (overfitting) then gets better (relieved
overfitting).

• L2 learning distance
• Contrary to the lotter ticket hypothesis.

Sparse Double Descent

Four phases of model sparsity
1. Low sparsity:

Pruned network = dense model

2. Critical phase:
Severe Overfitting

3. Sweet Phase:
Boosted accuracy

4. Collapsed Phase:
Accuracy Drops

Why Sparse Double Descent Occurs
• The Learning Distance Hypothesis for Sparse Double Descent

• L2 distance:

• Learning distance correlates

the test accuracy

Lottery tickets may not win at all time

• Reinitialized models could beat

lottery ticket models at the same

sparsity but different phases.

• Due to the Sparse Double Descent

• Add noise à fit noise.

CHEX: CHannel EXploration for CNN Model Compression

CVPR’22
Zejiang Hou, et al.

Motivation
• Structured Pruning or Dense-to-Sparse training.

• Training from scratch

• Prune and regrow the channels throughout the training process.
• tackle the channel pruning problem via a well-known column subset selection (CSS)

formulation

Introduction
• Previous pruning:
• pre-training a large model until convergence,
• pruning a few unimportant channels by the pre-defined criterion
• finetuning the pruned model to restore accuracy.

• long training time

• In this work, they dynamically adjust the importance of the channels via a
periodic pruning and regrowing process

• allows the prematurely pruned channels to be recovered and prevents the
model from losing the representation ability early in the training process.

Overview

Pruning Stage1: Reallocate number of channels
• learnable scaling factors in batch normalization (BN).

• ranking all scaling factors in descending order and preserving the top 1 − S
percent of the channels.

Pruning Stage2: CCS-Criterion
• Leverage score

• Information of N-th row.

• U11 and U12 present the

importance of the row with m11, m12.

Regrow Stage1: scheduler of number of regrown channels

• Cosine decay scheduler to gradually reduce the number of regrown channels

where δ0 is the initial regrowing factor, Tmax denotes the total exploration
steps, and ∆T represents the frequency to invoke the pruning-regrowing steps.

Regrow Stage2: determine the channels to regrow
• Orthogonal projection formula:

• A higher orthogonality value indicates that the channel is harder to
approximate by others, and may have a better chance to be retained in the CSS
pruning stage of the future steps.

• Be sampled with a relatively higher probability

Regrow Stage3: assign weight

• Most recently used (MRU) parameters, which are the last values before they
are pruned

Overall algorithm

Results

