EEFICIENT DEEP LEARNING
READING GROUP

0116/ 1013
fang U

SPDY: Accurate Pruning with speedup guarantees

ICML 22

Elias Frantar; Dan Alistarh

Motivation

e Unstructured Pruning (Weight Pruning)

* Previous Work:

* Minimize the number of remaining weights

* This Work

e Minimize the inference time

e Goal:

e Automatically determines layer-wise sparsity

* Methods:

* Dynamic Programming

e Local Search

Introduction

* Pruning Methods:

e Structured Pruning

* Unstructured Pruning

* Runtime Side, unstructured sparsity is important:
* Algorithms provides speedup on CPUs, GPUs or Specialized hardware.

* Commodity CPUs, AMD models only cares sparsity instead of quantization.

* Key issue of previous unstructured pruning works:

 Not consider the acceleration methods.

Introduction

e Contribution:

* learned efficient Sparsity Profiles via Dynamic programming search (SPDY). Determine
layer-wise sparsity to achieve a desired speedup.

* First, optimization problem = dynamic programming solver.

* Second, learns the layer-wise error-scores automatically, based on calibration dataset.

Optimization Problem

* Constrained Optimization Problem:
L L
ming, s es » € st » 8 <T. (1)

* Assumption:

* Overall execution time = Sum of the individual layer runtimes.

* Pruning a layer £ to sparsity s ultimately incurs some model error Gze , Which is
additive.

* Integer linear program (ILP)

* However, NP-hard and requires exponential time to solve.

Efficient Solver

¢ M d ke t| me t dS din | nteg er-va I ue Algorithm 1 We efficiently compute the optimal layer-wise

sparsity profile with execution time at most 7" given S, €},
t; and assuming that time is discretized, using bottom-up

* Dynamic Programming dynamic programming.
D« Lx(T+1) matr.ix filled with co
e Recursion: £ L T+ 1) matrix

if e§ < DJ[1,t;] then
D[1,t]] « ef; P[1,t]] « s

end if
: P end for
E;, =minges E, |* + € (2) for(=2,...,Ldo
. .) , for s € S do
E; = mingegre] if ' = {s|t] =t} # D else co. (3) fort=t5+1,...,T do

ife; + D¢ —1,t —t)] < D[{,t] then
D[/, t] < e; +D[{ —1,t —t5]; P[{,t] < s
end if
end for
end for
end for
t < argmin, D[L, t] // return D[L, t] as optimal error
for/=1L,...,1do
s < P[¢,t] // return s as optimal sparsity for layer ¢
bt —tS
end for

Error Metric ¢

* Previous:
* Weight Magnitude ; Squared Weight Magnitude ; Loss change

* Ours: “learning” or “search”

o, |
ezICg-(|S|Z_1), s=1—(1-6)° (4

T=10,000, |S| =42, L = 52 for ResNet50.

* How to check optimal “c”?

Quickly Check the Quality of a Sparsity Profile

* This database stores for each layer and each sparsity the “reconstruction” of
the remaining weights after pruning.

fo(X, W) — fo(X,W?*)||3, for layer Z.

argminy;,

* First, we query the database for the corresponding reconstructed weights of
each layer, each at its target sparsity.

e Second, we “stitch together” the resulting model from the reconstructed
weights, and evaluate it on a given small validation set.

Determine sensitivity values C.

Algorithm 4 SPDY search for optimal sensitivity values c*.
We use k£ = 100 and § = 0.1 in our experiments.

function eval(c)
e, < compute by formula (4) using c for all £
s¢ < run DP algorithm with e; for all £
M < stitch model for s, from database
Return calibration loss of M.
c* < sample uniform vector in [0, 1]
for £k times do
c < sample uniform vector in [0, 1]~
if eval(c) < eval(c*) then
c* ¢+ c
end if
end for
ford=1[6-L],...,1do
for £ times do
c<+c*
Randomly resample d items of ¢ in [0, 1]
if eval(c) < eval(c*) then
c* ¢+ c
end if
end for
end for

Overall

Target Time
T

Sparsity Levels

0.25 I:>

S = |0.50

0.75

0.25

0.25

0.25

v

v

v

FaW 7o)

O-£0

O-£o

U oU

U oU

U oU

0.75

0.75

0.75

4

£

43

Reconstruction Database

<
<

Stitching

Layer-wise Timings {;

Time

A

(@)

o.

O.

Q

"o

\\O~_O

O
-0

Calibration Data

[==

|

ming,cg Ze?’, s.t. Zt?’ <T
]]

0.25 0.50 0.75
Sparsity

>

Dynamic Programming

\ 4
Loss WV

Shrinking
Neighborhood
Local Search

N

0.80

0.40

0.15

Sparsity Profile

0.25
I:> 0.75
0.50

with time T

Layer-wise Sensitivies ¢y

Layer-wise Errors €

Score

oo .o _©
o .
9.0

0.25 0.50 0.75
Sparsity

c¢ - (logs(s)/|S1)*

Figure 3. A visual overview of the full SPDY method.

T=10,000, |S| =42, L = 52 for ResNet50.

Result

Model Dense | Speed. | CPU | SPDY | Uni. | GMP
ResNet50 76.13 | 2.00x | AMD | 76.39 | 76.01 | 75.85
ResNet50 76.13 | 2.50x | AMD | 75.56 | 75.12 | 74.76
ResNet50 76.13 | 3.00x | AMD | 74.75 | 74.02 | 73.44
ResNet50 76.13 | 3.50x | AMD | 73.06 | 71.62 | 70.22
MobileNetV1 7195 | 1.50x | Intel | 71.38 | 61.33 | 70.63
YOLOVSs 5640 | 1.50x | Intel | 55.90 | 54.70 | 55.00
YOLOVvS5s 5640 | 1.75x | Intel | 53.10 | 50.90 | 47.20
YOLOvSm 64.20 | 1.75x | Intel | 62.50 | 61.70 | 61.50
YOLOvSm 64.20 | 2.00x | Intel | 60.70 | 58.30 | 57.20
BERT SQuAD | 88.54 | 3.00x | Intel | 88.53 | 88.22 | 87.98
BERT SQuAD | 88.54 | 3.50x | Intel | 87.56 | 87.23 | 87.22
BERT SQuAD | 88.54 | 4.00x | Intel | 86.44 | 85.63 | 85.13
BERT SQuAD* | 88.54 | 4.00x | Intel | 87.14 | 86.37 | 86.39

Table 4. Comparing accuracy metrics for sparsity profiles after
gradual pruning models with respective state-of-the-art methods.

Sparse Double Descent: Where Network Pruning
Aggravates Overfitting

ICML'22
Zheng He, et al.

Motivation

* Previous work:

* Increase the model sparsity will prevents the overfitting.

* Sparse Double Descent:

* Increase the model sparsity, test performance first gets worse (overfitting) then gets
better (relieved overfitting).

Introduction

* Overparameterized DNNs are “good at” overfitting.

* In practice, DNNs often achieve higher generalization than smaller models.

* Recent, Deep Double Descent:

* Model capacity increases, test performance first gets better then worse (overfitting) then gets
better (relieved overfitting).

e Contribution:

* Sparse Double Descent.

* Increase the model sparsity, test performance first gets worse (overfitting) then gets better (relieved
overfitting).

* L2 learning distance
e Contrary to the lotter ticket hypothesis.

Sparse Double Descent

. 1.00 1 > 1.00 .. 1.00
Q 2] Q = Q -
g 1 g 1 g]
g 0.75 7 g 0.75 7 g
<] <<] << 0.50 T
g . =] = 0.50
i 0.50 3 0.50‘: 3 _
&] = . &]
2 050 T T
< 0.50- 2 0.50 £ 0.45
= = e = 4
3 7 3 g 3 =
< i << 0.45 <€ 0.40 1
V) (5} - fb) g
0.40 -]
= III]III]III]III]I‘I]III]III90.40llI]lIl]III]II]]III]III]III90'35_‘||l|||l||ll|ll||ll||l|||
0 589 832 931 972 988 99.5 0 589 832 931 972 988 99.5 0 58.9 832 931 972 98.8 99.5
Sparsity (%) Sparsity (%) Sparsity (%)

Figure 2. Sparse Double Descent of ResNet-18 on CIFAR-100 with 40% symmetric label noise, pruned using different strategies. We plot
the train and test accuracy against sparsity. Left: Magnitude-based pruning. Middle: Gradient-based pruning. Right: Random pruning.

Four phases of model sparsity

1. Low sparsity: >, 1.00
Pruned network = dense model : I H\ 111 v
o 20.80“ \
2. Critical phase: E \
Severe Overfitting g
= 0.90 -
3. Sweet Phase: <
é 0.80
Boosted accuracy

i LI B L L | T T T T T T 177 T
0 589 832 93.1 972 988 995
Sparsity (%)

4. Collapsed Phase:

Accuracy Drops Figure 5. Illustration of four phases using the result of LeNet-300-
100 on MNIST with 20% symmetric label noise. I: Light Phase.
IT: Critical Phase. III: Sweet Phase. IV: Collapsed Phase.

Why Sparse Double Descent Occurs

* The Learning Distance Hypothesis for Sparse Double Descent

-0.95

e L2 distance:

D
o
1
T
o
o]
)

Distance
at
=
1
T
=
(00]
ot
Test Accuracy

D(Winita W;ea,rned) — ||Wznzt o W?earnedlb’

N
O
1
T
©
Qo
(]

* Learning distance correlates 089 535 1 50 W W
Sparsity (%)

the test accuracy

Figure 9. The curve of learning distance for LeNet-300-100 on
MNIST with e = 20% may explain the double descent of test
accuracy. As model sparsity increases, learning distance coincides
the changes of test accuracy. The blue lines refer to /2 learning
distance and the red lines are test accuracy.

Lottery tickets may not win at all time

* Reinitialized models could beat
lottery ticket models at the same

sparsity but different phases.

* Due to the Sparse Double Descent

* Add noise =2 fit noise.

e 1.0
g
=
3
i - 1 —— Lottery
e Reinit
g =
&
2
= 0.85-
3
<
*g;‘;' 0.80
=

| DL L L DL L L

i LI A B L B B | LI I I B
0 589 &83.2 93.1 97.2 98.8 99.5
Sparsity (%)

Figure 10. Performance of ResNet-18 on CIFAR-10 with e = 20%
when retrained from either the original initialization (lottery tick-
ets), or a random reinitialization. Reinitialization results some-
times surpass lottery results.

CHEX: CHannel EXploration for CNN Model Compression

CVPR’22
Zejiang Hou, et al.

Motivation

 Structured Pruning or Dense-to-Sparse training.

* Training from scratch

* Prune and regrow the channels throughout the training process.

* tackle the channel pruning problem via a well-known column subset selection (CSS)
formulation

Introduction

* Previous pruning:
* pre-training a large model until convergence,
* pruning a few unimportant channels by the pre-defined criterion

* finetuning the pruned model to restore accuracy.

* long training time

* In this work, they dynamically adjust the importance of the channels via a
periodic pruning and regrowing process

* allows the prematurely pruned channels to be recovered and prevents the
model from losing the representation ability early in the training process.

Overview

Step 2

Step3to N

>
N A

\

N
e S
\ \

\
\

D i

WO 7

Channel regrowing stage

Randomly initialized Channel pruning stage

Channel pruning stage

sub-model |
I I I
CSS prune S Regrow Importance Restore CSS prune B
o number of . . o number of
criterion scheduler sampling weights criterion
channels channels

scheduler

Channel regrowing stage

Importance
sampling

Regrow

Yes
>
éTraining
Retained
channel
Regrown
channel
g Pruned model &
< Pruned optimized weights
I I 1 channel
Restore I ’
weights II» Training

Figure 2. An illustration of our CHEX method, which jointly optimizes the weight values and explores the sub-model structure in one
training pass from scratch. In CHEX, both retained and regrown channels in the sub-model are active, participating in the training iterations.

Pruning Stagel: Reallocate number of channels

* [earnable scaling factors in batch normalization (BN).

* ranking all scaling factors in descending order and preserving thetop 1 -S
percent of the channels.

Pruning Stage?2: CCS-Criterion

* Leverage score

* Information of N-th row.

* U1l and Ul2 present the

importance of the row with m11, m12.

Algorithm 2: CSS-based channel pruning.

1 Input: Model weights w'’; pruning ratios «' ;
2 Output: The pruned layer [;
3 Compute the number of retained channels

C' =11 -)C']

a4 Compute the top C" right singular vectors Vlél of w';
5 Compute the leverage scores for all the channels in layer [

5 = I[Vealssll3 forall j € [C'] 5

6 Retain the important channels identified as

T' = ArgTopK({¢} }; C") ;

7 Prune channels {w' ;,j ¢ 7"} from layer [;

Regrow Stagel: scheduler of number of regrown channels

* Cosine decay scheduler to gradually reduce the number of regrown channels

1 t-m
0 = 5 (1 + cos (Tmax/AT)> do

where 80 is the initial regrowing factor, Tmax denotes the total exploration
steps, and AT represents the frequency to invoke the pruning-regrowing steps.

Regrow Stage2: determine the channels to regrow

* Orthogonal projection formula:

T T

* A higher orthogonality value indicates that the channel is harder to
approximate by others, and may have a better chance to be retained in the CSS
pruning stage of the future steps.

* Be sampled with a relatively higher probability

Regrow Stage3: assign weight

* Most recently used (MRU) parameters, which are the last values before they
are pruned

Overall algorithm

Algorithm 1: Overview of the CHEX method.

1 Input: An L-layer CNN model with weights
W = {w!, ..., wl}; target channel sparsity S; total
training iterations 7o, ; initial regrowing factor do;
training iterations between two consecutive steps AT’
total pruning-regrowing steps Tmax; training set D ;

Output: A sub-model satisfying the target sparsity S and
its optimal weight values W™*;

Randomly initialize the model weights W;

(¥

w

4 for each training iteration t € [T1p] do
5 Sample a mini-batch from D and update the model
weights W ;

6 if Mod(t, AT) = 0 and t < T, then

7 Re-allocate the number of channels for each layer
in the sub-model {«',1 € [L]} by Eq.(4) ;

8 Prune {x'C",1 € [L]} channels by CSS-based
pruning in Algorithm 2 ;

9 Compute the channel regrowing tactor by a decay
scheduler function ;

10 Perform importance sampling-based channel

regrowing in Algorithm 3 ;

Results

Method PT FLOPs Top-1 Epochs Method PT FLOPs Top-1 Epochs
ResNet-18 ResNet-50
PFP [45] Y 127G 67.4% 270 GBN [82] Y 24G 76.2% 350
SCOP[71] Y 1.10G 69.2% 230 LeGR [4] Y 24G 75.7% 150
SFP [24] Y 1.04G 67.1% 200 SSS [35] N 23G 71.8% 100
FPGM [26] Y 1.04G 68.4% 200 TAS [9] N 23G 762% 240
DMCP[16] N 1.04G 69.0% 150 GAL [48] Y 23G 72.0% 150
CHEX N 1.03G 69.6% 250 Hrank [46] Y 23G 75.0% 570
ResNet-34 Taylor [62] Y 22G 74.5% -
Taylor [62] Y 2.8G 728% - C-SGD [6] Y 22G 749% -
SFP [24] Y 22G 71.8% 200 SCOP [71] Y 22G 76.0% 230
FPGM [26] Y 2.2G 725% 200 DSA [63] N 20G 747% 120
GEFS [79] Y 21G 729% 240 CafeNet [69] N 2.0G 76.9% 300
DMC[12] Y 21G 72.6% 490 CHEX-1 N 20G 774% 250
NPPM [11] Y 2.1G 73.0% 390 SCP [37] N 19G 753% 200
SCOP[71] Y 20G 72.6% 230 Hinge [44] Y 19G 747% -
CafeNet [69] N 1.8G 73.1% 300 AdaptDCP [89] Y 19G 75.2% 210
CHEX N 20G 73.5% 250 LFPC [23] Y 1.6G 745% 235
ResNet-101 ResRep [¢] Y 15G 753% 270
SFP [24] Y 44G 77.5% 200 Polarize [88] Y 1.2G 74.2% 248
FPGM [26] Y 4.4G 773% 200 DSNet [41] Y 12G 74.6% 150
PFP [45] Y 42G 76.4% 270 CURL [56] Y 1.1G 73.4% 190
AOFP [7] Y 38G 76.4% - DMCP [16] N 111G 74.1% 150
NPPM [11] Y 3.5G 77.8% 390 MetaPrune [52] N 1.0G 73.4% 160
DMC[12] Y 33G 774% 490 EagleEye [40] Y 1.0G 74.2% 240
CHEX-1 N 34G 78.8% 250 CafeNet [69] N 1.0G 75.3% 300
CHEX-2 N 19G 77.6% 250 CHEX-2 N 1.0G 76.0% 250

(a)

