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Abstract

As convolutional neural networks (CNNs) are more and
more widely used in computer vision area, the energy con-
sumption of CNNs has become the focus of researchers.
For edge devices, both the battery life and the inference la-
tency are critical and directly affect user experience. Re-
cently, great progress has been made in the design of neural
architectures and new operators. The emergence of neu-
ral architecture search technology has improved the perfor-
mance of network step by step, and liberated the produc-
tivity of engineers to a certain extent. New operators, such
as AdderNets, make it possible to further improve the en-
ergy efficiency of neural networks. In this paper, we explore
the fusion of new adder operators and common convolu-
tion operators into state-of-the-art light-weight networks,
GhostNet, to search for models with better energy efficiency
and performance. Our proposed search equilibrium strat-
egy ensures that the adder and convolution operators can be
treated fairly in the search, and the resulting model achieves
the same accuracy of 73.9% with GhostNet on the ImageNet
dataset at an extremely low power consumption of 0.612 mJ.
When keeping the same energy consumption, the accuracy
reaches 74.3% which is 0.4% higher than original Ghost-
Net.

1. Introduction

With the development of convolutional neural networks
(CNN:s), the applications on the edge devices are becoming
more and more popular. However, deployment of neural
networks on edge devices is a highly challenging task due
to their limited memory storage and low computational ca-
pability. For real-time responses and long battery life, the
neural networks deployed on edge devices should have high
accuracy but low power consuming and latency. To achieve
this goal, great efforts have been dedicated for designing
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Figure 1. Accuracy-Energy Pareto frontier. Our ACGhostNet

models achieve the best performance in all energy ranges.

light-weight neural architectures and hardware-friendly op-
erators.

Designing architectures for neural networks has been
an important topic for deep learning. Recently, the emer-
gence of Neural Architecture Search (NAS) [33] brings new
paradigm for model design, which automatically discovers
optimal networks given the search space without the bur-
den of human experts. NAS has shown great performance
for various tasks like image classification [30, 10], segmen-
tation [12], object detection [5], efc. More importantly,
NAS can search for hardware-friendly models [27] for dif-
ferent platforms based on the actual resource constraints.
Recently, with the introduction of concepts such as shared
weights [21], the efficiency of NAS algorithms has been
improved significantly. At present, the NAS algorithm has
been able to obtain considerable performance improvement
at the cost of a small search time.

Meanwhile, the basic operation of convolutional neu-
ral network is evolving towards more efficient energy cost
and less computational burden. For example, operations
without multiplication have also received widespread at-
tentions. AdderNet [2, 29] first proposes an addition op-
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erations which achieve significantly high energy efficiency
while maintaining a satisfying accuracy. There are some
variants of AdderNet, such as ShiftAddNet [3 1], to find dif-
ferent energy-accuracy trade-off between CNNs and Adder-
Nets. Besides, Binary Neural Network (BNN) [7] is an-
other kind of multiplication-free networks. Calculations in
BNN could be implemented by XNOR operations. How-
ever, BNN now still suffer from severe accuracy loss in most
cases. For example, state-of-the-art binary algorithm Re-
ActNet [15] achieves 65.9% top-1 accuracy on ImageNet
dataset with model ResNet-18, which is 4% lower than
CNN and AdderNet [3]. Given these energy efficient net-
works such as AdderNets, it is therefore a quite interesting
topic to explore whether we could discover a hybrid net-
works via convolutional and adder filters, to achieve better
trade-off between accuracy and efficacy.

At the same time, the idea of manual network structure
design for lightweight and mobile-based networks is also
improving continuously, mainly due to their highly com-
pact architectures and low computational cost. For exam-
ple, MobileNets [ 1] utilizes the inverse bottleneck struc-
ture to achieve good accuracy and latency on mobile de-
vices. GhostNet [9] series propose to use low-cost oper-
ations, such as depthwise convolution or shift [18], instead
of expensive convolution operations, and they achieve state-
of-the-art performance. Therefore, we aim to build upon
these lightweight and mobile-based networks and investi-
gate a proper way to utilize the adder filters to achieve better
accuracy.

We aim to explore the design of ultra-low-power net-
work architecture models. In the work of AdderNet, the
author only gives the network under the convolution oper-
ation, and does not study the model under the mobile set-
tings. In this paper, we propose a novel method to search
for a hybrid of convolution and adder operators to obtain
an extremely low-power architecture based on the light-
weight GhostNet model. We first analysis the difficulties
of applying adder operations to energy-efficient models like
GhostNet. Then we propose several searching strategies to
ensure we find satisfying hybrid adder-convolution neural
networks, including search space and search object design,
seperate warmup strategy and adaptive learning rate trick.
We also scale our searched models to different energy range
to get models that adapt to different situations. Extensive
experiments on CIFAR-100 and ImageNet demonstrate that
our searched Adder-Convolution GhostNet (abbreviated as
ACGhostNet) achieves better energy-accuracy tradeoff in
almost every energy range. For example, ACGhostNet
achieves the same accuracy of 73.9% with GhostNet on the
ImageNet dataset at an extremely low power consumption
of 0.612 mJ. When keeping the same energy consumption,
the accuracy reaches 74.3% which is 0.4% higher than orig-
inal GhostNet.

2. Related Work
2.1. Neural Architecture Search

NAS is often considered as a subfield of AutoML. In
2016, Zoph et al. [33] first propose to use reinforcement
learning to search for optimal architectures. In their paper,
they believe that the NAS framework consists of controller
and evaluator. There is a pre-defined search space includ-
ing optional operations and connections of neural networks.
The controller samples architectures from the search space
and then the evaluator gives a performance back, which
is used to update the controller. The original NAS algo-
rithm was very slow, taking thousands of hours to complete
a search. To improve the efficiency of search process, re-
searchers have make plenty of efforts.

The controller is responsible for selecting architectures
in every search iteration, so the efficiency of the controller
directly affects the number of iterations required for the
search and the final results. NAS [33], MNasNet [24] and
ENAS [21] use reinforcement learning with RNN model
as the controller. With the development of weight-sharing
NAS, differentiable controllers are more popular now, in-
cluding DARTS [!4] and FBNet [27]. At the mean-
while, evolutionary algorithm is also widely used. Amoe-
baNet [22] proposes to use aging evolution to encourage the
exploration. NSGA-Net [17] gives a method to do multi-
objective search. CARS [30] improves the NSGA-Net to
mitigate the correlation problem brought by weight sharing.

For the evaluator, the most important improvement is the
weight sharing strategy proposed by ENAS [2 1], which re-
duces the cost of evaluation significantly. Besides, zero-shot
NAS is another research hotspot. Zero-shot NAS [28, 20]
proposes to train a predictor to predict the performance of
architectures instead of evaluating them.

In terms of search space, Zoph et al. propose to ap-
ply transferable cell search space to reduce the cost [34].
PNAS [13] gives a progressive way to accelerate the search
process. DARTS [14] gives a multi-step two-edge cell
search space and it is widely used now. MNasNet [24] in-
troduces a single-path search space which is more friendly
to mobile devices.

The effectiveness evaluation of NAS methods is one of
the hotspots in recent years. Ning et al. [19] give some
suggestions on how to achieve better results with one-shot
NAS and zero-shot NAS. Yu et al. [32] also propose some
methods to help to train the supernet. Researchers have de-
veloped some NAS benchmarks, such as NasBench-101,
NasBench-201 and NasBench301, which provide the pos-
sibility to evaluate the strategies of NAS.

2.2. Operations and Archtectures Design

The efficiency and accuracy of convolution neural net-
works are the focus of industry. Depthwise convolution [6]
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has become a standard operation of light-weight neural net-
works on mobile devices. Based on the depthwise convolu-
tion operation, MobileNet series [ | ] become a benchmark
for deploying neural networks on mobile devices. Ghost-
Net [9] puts forward a new idea of generating ghost fea-
tures by cheap operations, such as depthwise convolution
and shift operation [ 18], which largely reduce the calcula-
tion cost.

In addition to the traditional convolution operation, there
are also some multiplication-free operations which deliver
significant power consumption benefits. One of the them is
BNN [7], which uses XNOR operations instead of multipli-
cations. However, the accuracy has always been a problem
that plagues the applications of BNN. State-of-the-art BNN
algorithm, like ReActNet [15] ResNet-18, only achieves
65.9% top-1 accuracy based on ImageNet.

Another work that has received much attention is Adder-
Net. AdderNet [2] introduces to use ¢; distance instead of
convolutions, which converts a multiplication operation to
an addition operation. This replacement greatly reduces en-
ergy costs. With the help of following work [29, 3], Adder-
Net ResNet-18 can achieve 69.8% top-1 accuracy on Im-
ageNet, which is comparable with CNNs. There are also
researches on the hardware design of AdderNet [26, 25],
making it possible to real-world applications. AdderNet has
been applied in various computer vision tasks, like super-
resolution [23] and detection [4].

3. Proposed Methods
3.1. Preliminary

In AdderNet, authors use ¢; distance instead of convolu-
tions to represent feature maps. The calculations of Adder
Networks can be formulated as:

Cin
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Where X denotes the input feature map and F' denotes
the filters. According to the investigation in [8], 32-bit float-
ing point multiplication requires 3.7 pJ energy, while 32-bit
floating point addition only requires 0.9 pJ. As for 8-bit fix
point number, multiplication requires 0.2 pJ energy, which
is 6-7 times larger than addition (0.03 pJ). So using ¢; dis-
tance significantly reduces the power consuming.

As mentioned in [2], the gradient of X and F' is approx-
imate by /5 distance and HardTanh, respectively.
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To stablize the training process, AdderNet proposes to use
adaptive learning rate (ALR), which is defined as:

'k
Q= s
|AL(EY)]2

in which 7 is a hyper-parameter which is actually the learn-
ing rate of adder layers, and k represents the number of
weights in this layer. With adaptive learning rate, the {5
norms of gradients of each layer are almost the same, so the
converge process could be stablized.

3.2. Search Space
Table 1. Comparison of CNN and AdderNet on GhostNet models
Accuracy
CNN | AdderNet | &%
GhostNet-1.0x | 75.56% | 73.59% 1.97%
GhostNet-0.5x | 72.92% | 68.30% 4.62%
GhostNet-0.25x | 69.53% | 56.80% 12.73%

While AdderNet achieves great success with the large
models like ResNet and VGG, the performances on light-
weight models including GhostNet and MobileNet series
are not satisfying. As shown in Table 1, the performance
of Adder GhostNet on CIFAR-100 dataset is significantly
worse than original GhostNet. And the accuracy gap is
becoming larger when the size of models are shrinked.
This phenomenon may indicate that the presentative abil-
ity of depthwise adder operation is not enough. We have to
take this into account while designing our search space and
search strategies.

Table 2. Configurations of candidate modules in our search space

1st Block 2nd Block
Module Type (normal conv)  (cheap op) Groups
AAgl adder adder N
AAg2 adder adder N/2
ACgl adder conv N
ACg2 adder conv N/2
CAgl conv adder N
CAg2 conv adder N/2
CCgl conv conv N
CCg2 conv conv N/2

To alleviate the accuracy loss caused by depthwise adder
operations, we provide group convolutions as a subtituted
choice. We choose state-of-the-art light-weight model
GhostNet as our backbone. The GhostNet model contains
[1,2,2,4,2,5] blocks for six stages. In each block, there are
two GhostModules and one SE Module. For the first block
in stage 1/2/3/5, there is a stride=2 layer to downsample
the feature maps.

Based on the GhostNet, we apply a single-path block-
wise search space. The unit of our search space is shown
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Figure 2. Structure of our backbone model and search space.

in the right of Figure 2, which we called ACGhostMod-
ule. Operation conv3x3 and adder3x3 actually refer to a
conv3x3/adder3x3-BatchNorm-ReLU sequence. Operation
dwcev3x3gl and dwev3x3g2 refers to the cheap operations
in Ghostnet. To specify, they are conv3x3 with groups
equal to channels and conv3x3 with groups equal to half
of the channels, respectively. Same with dwadd3x3gl and
dwadd3x3g2. So there are 2 x 4 = 8 choices in each block,
and the size of search space is 8'6 ~ 2.8 x 10'“. For ease
of description, we use ACg! to present the block which has
adder3x3(A) and dwcv3x3gl(Cgl) operations and the oth-
ers are decribed with the same method, shown in Table 2.

3.3. Search Object

The original search object used in CARS is the number
of parameters. In this paper, we need a different search
object which could tell the difference between adder op-
erations and convolution operations with the same number
of parameters. Therefore, we choose energy as our search
object. We use the data with 32-bit floating point number
in [8]. So we model the addition operation as 0.9 pJ energy
and the multiplication operation as 3.7 pJ energy. Then the
energy cost of a multiplipy accumulate (MAC) operation is
4.6 pJ and an adder accumulate operation is 1.8 pJ.

3.4. Search Strategies

Different from vanilla convolution neural networks, it
takes more training time for AdderNets to converge. This
causes to some kind of unfaireness when we search for a
hybrid architecture containing both convolution operations
and adder operations. We conduct a toy experiment to show
the unfairness. The toy experiments contains two opera-
tion sets: (1) conv3x3 (c3) and conv5x5 (c5) / (2) adder3x3
(a3) and adder5x5 (a5). We only set two layers in our toy
single path super-net and we train these two toy super-net
for three times. Also we train each standalone model for
three times and average the accuracy. The results are shown
in Table 3. We can find that the rankings of convolution

operations in searching are just the same as that in train-
ing. However, for adder operations, the rankings are obvi-
ously different. Adder5x5 operation performs worse than
adder3x3 operation in some cases. If we apply kendall-tau
(the larger, the better) as a quantifiable indicator to evaluate
the rank correlation between the super-net and single mod-
els, we can find that the kendall-tau of adder operation is
only 0.33 while the kendall-tau of convolution operation is
1. The result means that AdderNets are more difficult to
converge than CNNs and are maybe influenced by the small
model trap problem [30] more seriously, which claims that
smaller models have more opportunities to win due to their
fast convergence.

Table 3. Toy experiment of ranking correlation

search train
accuracy rank accuracy rank
a3,a3 | 48.26+0.15 3 72.60+0.08 4
a5,a3 | 47.61+0.17 4 75.17+0.05 3
a3,a5 | 49.41+0.22 1 77.15+0.15 2
a5,a5 | 48.72+0.17 2 78.454+0.07 1
c3,c3 | 61.58+0.34 4 75.33+0.33 4
c5,c3 | 62.50+0.39 3 77.72+0.19 3
c3,c5 | 64.824+0.30 2 79.31+0.20 2
c5,c5 | 65.45+0.39 1 81.0740.21 1

To alleviate the ranking correlation issues we mentioned
above, we must find suitable search strategies. CARS [30]
proposed a powerful evolutionary algorithm called pPNSGA-
III. pNSGA-III can help to overcome the small model trap
in some way, so it is a perfect choice for our purpose.

There is a brief introduction of the search process. First
we train the supernet by randomly picking paths, and this
would give each path a initial performance. Then n can-
didates are randomly chosen as the initial population and
we train these n candidates for some epochs. After every
t epochs of training, we insert a evolution process to up-
date the population. For the evolution process, we apply
PNSGA-III algorithm to generate the next generation. We
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Table 4. Results of CIFAR-10 dataset

Model #Params #FAdd #FMul energy(iJ) Accuracy (%)
GhostNet-1.0x [9] 3.9M 43M 43M 196.3 94.9
Adder-GhostNet-1.0x 3.9M 81IM 4M 88.4 93.3
ACGhostNet-A (Ours) 4.0M 1M I9M 135.3 94.8
ACGhostNet-B (Ours) 4.0M 61M 28M 156.8 95.2
ACGhostNet-C (Ours) 4.0M 61M 30M 165.3 95.1
ACGhostNet-D (Ours) 4.0M 56M 36M 185.2 95.1

use mutation and crossover to expand the population, and
then pNSGA-III algorithm make two dominating sortation
on these candidates, according to the [accuracy, energy] and
[accuracy, l/energy], respectively. The former one is the
normal pareto frontier and latter one is used to alleviate the
influence of small model trap. Then the results of two sor-
tations are directly merged and the first n candidates are re-
served. We repeat these steps until reaching the maximum
training epochs.

In our search space, one path refers to one candidate, and
the mutation means one choice of ACGhostModule turns
into another while crossover means one path take the choice
of a block from the other path.

We have made some modifications to the search and
training process to make it more suitable for the hybrid
search of convolution operations and adder operations.

3.4.1 Training Settings of the Super-net

As we introduced in section 3.1, AdderNet uses adaptive
learning rate to update the parameter. The reason why
AdderNet needs adaptive learning rate is that the norm of
gradients of AdderNets vary widely across different layers.
Adaptive learning rate can stablize the training process of
AdderNet. Considering about our hybrid adder-convolution
search, while training the super-net, convolution operation
and adder operation are updated together. If we only ap-
ply adaptive learning rate to adder operations, the gradients
would differ greatly between these two operations, which
lead to the unfairness of converge speed. Therefore, we ap-
ply adaptive learning rate for both convolution operations
and adder operations. Noted that convolution neural net-
work with adaptive learning rate can also achieve similar
accuracy compared with normal learning rate.

3.4.2 Seperate Warmup Strategy

In some exploratory experiments, we find that the warmup
process can also bring unfairness between adder operations
and convolution operations. With same epochs training,
adder operations are significantly worse than convolution
operations. So during the first one to two rounds of evolu-
tion, adder operation would soon become scarce. To solve
this problem, we propose a seperate warmup strategy. We

divide the whole supernet into three sub-supernets accord-
ing to the ratio of adder operations, and then train each sub-
supernet until it converges to a setting accuracy threshold
t. The effectiveness and analysis of our seperate warmup
strategy would be discussed in the Section 4.4.

4. Experiments
4.1. Experimental Settings

CIFAR-10 is a small dataset containing 60000 32 x 32
RGB images, in which 50000 images are used for train-
ing and 10000 images are used for evaluation. ImageNet
is much larger, with 1281167 training and 50000 evalua-
tion images. CIFAR-10 is generally used as the surrogate
dataset in NAS process which means that we search the op-
timal architectures on CIFAR-10 dataset, and they are fi-
nally trained and used on ImageNet dataset.

Searching: We train the supernet for 500 epochs in to-
tal, in which the first 50 epochs are used to warmup. Then
we repeat the evolving process every ten epochs. The size
of population is set as 128, and we expand it to 256 for the
evolving process. We use SGD optimizer with momentum
to train supernet and the momentum is set as 0.9. The learn-
ing rate is initialized as 0.025 and then decays with a cosine
scheduler. The batch size of training is 128 and the weight
decay is set as 3e~*. Half of the training data is used to
train the supernet and the other half is used to evaluate.

Training: We also use the SGD optimizer with momen-
tum to train our final models. The initial learning rate is
set as 0.4 and decays with a cosine scheduler too. We train
the model with 8 Nvidia V100 GPUs using 1024 batch size.
The weight decay is set as 3¢~ and dropout ratio is 0.2. We
train the model for 800 epochs in total and 4 epochs are used
to warmup. The data pre-processing is all the same as [9].
The hyper-parameter 7 of adaptive learning rate is set as
1/15. We do not apply grad clip technique since grad clip
may destroy the gradient after scaling by adaptive learning
rate.

4.2. Results on CIFAR10

We train the searched models on CIFAR-10 to make a
quick evaluation. The models are trained 600 epochs with
256 batch size on a single Nvidia V100 GPU, and the learn-
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Table 5. Results of ImageNet dataset

Model #Params #FAdd #FMul resolution energy(mJ) Top-1(%) Top-5 (%)
CNNs
MobileNetV3-Large0.75 [10] 4.0M 155M  155M  224x224 0.713 73.3 -
MobileNetV3-Largel.0 [10] 5.4M 2I19M  219M 224224 1.007 75.2 -
SkipblockNet-XS [1] 2.3M 81M 224 %224 0.372 66.9 88.9
SkipblockNet-S [1] 3.6M 152M  152M  224x224 0.699 73.8 914
SkipblockNet-M [1] 5.5M 246M  246M 224224 1.131 76.2 92.8
MUXNet-xs [16] 1.8M 66M 224 %224 0.304 66.7 86.8
MUXNet-s [16] 2.4M 117M  117TM  224x224 0.538 71.6 90.3
MUXNet-m [16] 3.4M 218M  218M  224x224 1.003 75.3 92.5
GhostNet-0.5x [9] 2.6M 42M 224 x224 0.225 66.2 86.6
GhostNet-1.0x [9] 5.2M 141IM  141M  224x224 0.649 73.9 91.4
GhostNet-1.3x [9] 7.3M 226M  226M  224x224 1.058 75.7 92.7
AdderNets
Adder-GhostNet-1.0x 5.2M 267TM 224 %224 0.297 68.9 88.1
Adder-GhostNet-1.55x 9.5M 606M 224 %224 0.644 72.8 90.9
Hybrid Add-Convolution Networks
ACGhostNet-A (Ours) 5.2M 235M 224 x224 0.448 72.6 90.6
ACGhostNet-B (Ours) 5.2M 202M 224 %224 0.537 73.4 91.0
ACGhostNet-C (Ours) 5.2M 204M  101IM  224x224 0.556 73.6 914
ACGhostNet-D (Ours) 5.2M 192M  119M  224x224 0.612 73.9 91.5
~ ACGhostNet-A-S (Ours) ~ 38M  157M  44M 224x224 0302 699 889
ACGhostNet-C-S (Ours) 5.2M 243M  120M  240x240 0.661 74.3 91.8
ACGhostNet-D-S1 (Ours) 5.9M 225M  140M  224x224 0.721 74.6 91.9
ACGhostNet-D-S2 (Ours) 5.9M 292M  182M  256x%256 0.936 75.6 92.5

ing rate is initialized as 0.025 and then decay with a cosine
scheduler. The results are shown in Table 4. We can find
that our ACGhostNet-A model achieves comparable accu-
racy with original GhostNet-1.0x while the energy cost de-
creases by 30%. And ACGhostNet-B/C/D achieve even bet-
ter accuracy with less energy cost.

4.3. Results on ImageNet

We finally evaluate our models on ImageNet dataset. The
results are shown in Table 5. In addition to the four models
we searched, we also evaluate the scaled models, to check
the energy-accuracy tradeoff in different energy range. We
scale the searched models by enlarging or shrinking the
number of filters or input resolution.

We pick several state-of-the-art energy-efficient CNN
models, like MobileNetV3 [10], MUXNet [16] and Skip-
blockNet [1], to compare with. Our ACGhostNet obvi-
ously achieves better accuracy under similar or even less
energy cost. To specify, our ACGhostNet-D achieve the
same accuracy 73.9% with GhosetNet-1.0x while the en-
ergy cost is less, and our ACGhostNet-C-S achieve 0.4%
better accuracy with the same energy cost. Considering
about large model like GhostNet-1.3x and tiny model like
GhostNet-0.5x, our ACGhostNet-D-S2 and ACGhostNet-

A-S also achieve better energy-accuracy trade-off.

4.4. Ablation Study

Table 6. Kendall-tau of different training strategies

Training Strategy
Adaptive LR Seperate Warmup Kendall-Tau
-0.359
vV -0.153
Vv 0.296
vV Vv 0.442

In this section, we evaluate the effectiveness of our
seperate warmup strategy and training hyper-parameters.
We evaluate them from two aspects: the final accuracy of
searched standalone models and the ranking correlations on
the subset of our search space.

First we show the search results under different warmup
settings on CIFAR-10 dataset in the left of Figure 3. From
the figure we can find that seperate warmup until accuracy
reaches 70% achieves the best results. We also evluate the
search results of convolution operations with/without adap-
tive learning rate, shown in the right of Figure 3. We can
find that convolution operations with adaptive learning rate
is also better than without adaptive learning rate.
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From another aspect, we conduct a toy experiment on
the subset of our search space, to show the influence of our
strategies to the ranking correlations. We pick two opera-
tions in our search space as the subset, AAgl and CCgl.
And we set the block number of each stage as 1, so there
are 6 blocks in total. The whole size of our toy search
space is 26 = 64. We train all standalone models in our
toy search space to get the ground truth ranking. Then we
train the super-net with different strategies and then evaluate
every architecture to get a searched ranking. For no seper-
ate warmup scenario, we train the super-net for 50 epochs.
Otherwise, we seperately warmup different operations to a
certain accuracy threshold and then train the super-net for
20 epochs, to keep the fairness of comparison.

The scatters of predict-ground truth accuracy are shown
in Figure 4. The scatters of upper two figures show a
negative correlation between predict accuracy and ground
truth accuracy, while the lower two show a positive cor-
relation. We use kendall-tau to directly show the ranking
correlation in Table 6. Training with both adaptive learning
rate (ALR) and seperate warmup strategy obviously achieve
the best kendall-tau and significantly outperforms others.
Noted that without adaptive learning rate, the kendall-tau
even becomes negative, which means the predict results are
opposite to the ground truth. This means that adder oper-
ations which should be worse than convolution operations
are wrongly thought to be better with the help of adaptive
learning rate.
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Figure 6. Energy and FLOPs distribution in our searched models. The X axis represents the index of blocks and the Y axis represents the

average energy or FLOPs.

4.5. Analysis of Searched Models

Our searched models are shown in Figure 5. There are
something in common among our searched models. First,
our sampler think the first block of each stage is more im-
portant than others. We can find that the first block of stage
2 and stage 5 are all formed by convolution operations, and
most have groups=N/2. Second, for the models with less
energy cost (like ACGhostNet-A ad ACGhostNet-B), there
are more AA and AC blocks, which have lower energy con-
suming. For larger models, there are more CC and CA
blocks which requires more energy but have better accu-
racy. Third, there are more groups=N/2 blocks in the last
two stages, which may means that these blocks need more
model capacity to extract features. We also calculate the
average number of FLOPs and energy cost of each block
among 4 architectures, shown in Figure 6. We can find
that block 1 and block 10 require the largest FLOPs since
there are many groups=N/2 layers, but block 11 requires
the most energy cost since all operations are convolution.
We hope these knowledges would help in the future hybrid
adder-convolution neural network design.

5. Conclusion

In this paper, we make a exploration of the searching for
energy-efficient hybrid adder-convolution neural networks.
We propose the hybrid search space which contains both
adder operations and convolution operations. Besides, we
analyse the difficulties to search with adder operations, and
then we give corresponding guidance to deal with the un-
fairness in our search process. We apply CARS to alleviate
the small model trap problem, and raise seperate warmup
strategy and some training recommends. With these tech-
niques, our searched ACGhostNet models achieve compa-
rable accuracy with original GhostNet with only 612 mJ en-
ergy, and the accuracy under the same energy cost as origi-
nal GhostNet is improved by 0.4% on ImageNet dataset. We
also make some ablation study to show the unfairness dur-
ing searching and the effectivess of our strategies. Finally
we show our searched architectures and find some common
knowledge for the future model design.

In the future, we would try larger hybrid search space,
with more possible operations, to search for more energy-
efficient models. Besides, we would attempt to search for
different vision tasks and hardware platforms.
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