Accelerating Dataset Distillation via Model Augmentation

Zhang, L., Zhang, J., Lei, B., Mukherjee, S., Pan, X., Zhao, B., Ding, C., Li, Y. and Xu, D.

CVPR, 2023 (Highlight)

Background: data distillation

- Deep learning rely on large dataset
 - Lots of computational resources
 - Time-consuming training process
- Data distillation (DD) or data condensation [1]
 - Generate a small but informative synthetic data
- Matches the network gradients on
 - synthetic dataset & real dataset

$$\begin{aligned} & \underset{\mathcal{S}}{\text{maximize}} \sum_{t=0}^{\tau} \text{Cos}\left(\nabla_{\theta} \ell\left(\theta_{t}; \mathcal{S}\right), \nabla_{\theta} \ell\left(\theta_{t}; \mathcal{T}\right)\right) \\ & w.r.t. \quad \theta_{t+1} = \theta_{t} - \eta \nabla_{\theta} \ell\left(\theta_{t}; \mathcal{S}\right) \end{aligned}$$

Background: limitation in data distillation

- Data distillation process is expensive
 - Although model training on a small synthetic data is fast
 - SOTA method (IDC) takes 30 hours to condense 50,000 CIFAR-10 images to 500 synthetic images on one RTX-2080 GPU.
 - That equals to train 60 ConvNet-3 models on the original dataset.
 - The cost will rapidly increase for large-scale datasets e.g. ImageNet-1K.

Background: why DD is expensive

- They focus on generalizability
 - They requires optimizing the synthetic set over thousands of differently initialized network.
 - IDC: requires 2000 randomly initialized models
 - TM: requires 200 pre-trained expert models
 - Intuition: training the synthetic data with diverse models leads to better generalization performance
- Question 1:
 - How to design the candidate pool of models to learn from synthetic data?
- Question 2:
 - Can we learn a good synthetic set using only a few models?

Overview

- Question 1:
 - How to design the candidate pool of models to learn from synthetic data?
- Answer 1:
 - Early-stage models are more efficient for gradient matching based dataset condensation methods
- Question 2:
 - Can we learn a good synthetic set using only a few models?
- Answer 2:
 - Yes! (weight perturbation on selected early-stage models)

Method: early-stage models

- Gradient guidance from randomly initialized networks:
 - Insufficient and unstable
 - Requires many epochs or a large number of models
- Well-trained models have small gradients [1].

Model augmentation

- Utilize pre-trained information
- Ensemble is helpful: pre-train a small set of models
- \circ Early stage models have large gradients \rightarrow alleviating gradient vanishing challenge

[1] Dataset Condensation via Efficient Synthetic-Data Parameterization, ICML 2022.

Method: weight perturbation

- Data augmentation: perturbing training data to induce diversity
- Weight perturbation to perturb early-stage network weights
 - Diversify the feature space

$$\begin{split} \min_{\mathcal{S}} D\left(\nabla_{\theta} \ell\left(\hat{\theta}; \mathcal{S}\right), \nabla_{\theta} \ell\left(\hat{\theta}; \mathcal{T}\right)\right) \\ w.r.t. \ \hat{\theta} \to \theta^{\mathcal{T}} + \alpha \times \mathbf{d}, \\ \mathbf{d}_{l,j} \leftarrow \mathbf{\underline{d}}_{l,j} \|_{F} \\ \hat{\mathbf{w}}_{l,j} \|_{F} \end{split}$$

Method

• Early-stage models + weight perturbation

Results

Dataset	Method	Img/Cls			Speed Up	Acc. Gain
		1	10	50	- Speed Op	Acc. Galli
CIFAR-10	Full Dataset	88.1	88.1	88.1	-	-
	IDC [27]	50.6 (21.7h)	67.5 (22.2h)	74.5 (29.4h)	$1.00 \times$	$1.00 \times$
	CAFE [56]	30.3	46.3	55.5	-	$0.54 \times$
	DSA [62]	28.2 (0.09h)	52.1 (1.94h)	60.6 (11.1h)	$85.0 \times$	$0.71 \times$
	DM [63]	26.0 (0.25h)	48.9 (0.26h)	63.0 (0.31h)	$89.0 \times$	$0.69 \times$
	TM [4]	46.3 (6.35h)	65.3 (6.69h)	71.6 (7.39h)	$3.57 \times$	$0.94 \times$
	Ours ₅	49.2 (4.44h)	67.1 (4.45h)	73.8 (6.11h)	4.90 imes	0.99 imes
	Ours ₁₀	48.5 (2.22h)	66.5 (2.23h)	73.1 (3.05h)	9.77 imes	0.97 imes
CIFAR-100	Full Dataset	56.2	56.2	56.2	-	-
	IDC [27]	25.1 (125h)	45.1 (127h)	-	$1.00 \times$	$1.00 \times$
	CAFE [56]	12.9	27.8	37.9	-	$0.56 \times$
	DSA [62]	13.9 (0.83h)	32.3 (17.5h)	42.8 (221.1h)	$78.9 \times$	0.63 imes
	DM [63]	11.4 (1.67h)	29.7 (2.64h)	43.6 (2.78h)	$61.4 \times$	$0.55 \times$
	TM [4]	24.3 (7.74h)	40.1 (9.47h)	47.7 (-)	$14.7 \times$	$0.92 \times$
	Ours ₅	29.8 (25.1h)	45.6 (25.6h)	52.6 (42.00h)	4.97 imes	$1.10 \times$
	Ours ₁₀	29.4 (12.5h)	45.2 (12.8h)	52.2 (21.00h)	9.96 imes	1.09 imes
	Ours ₂₀	29.1 (6.27h)	44.1 (6.40h)	52.1 (10.50h)	19.9 imes	1.07 imes

Results

Figure 3. Performance comparison across a varying number of training steps.

Figure 4. Performance comparison across varying training time and FLOPs.

