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Background: data distillation
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[1] https://georgecazenavette.github.io/mtt-distillation/



Background: limitation in data distillation

e Data distillation process is expensive
o Although model training on a small synthetic data is fast

o SOTA method (IDC) takes 30 hours to condense 50,000 CIFAR-10 images to 500 synthetic images on
one RTX-2080 GPU.

o  That equals to train 60 ConvNet-3 models on the original dataset.
o The cost will rapidly increase for large-scale datasets e.g. ImageNet-1K.
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Background: why DD is expensive

e They focus on generalizability

They requires optimizing the synthetic set over thousands of differently initialized network.

o IDC: requires 2000 randomly initialized models

o TM: requires 200 pre-trained expert models

o Intuition: training the synthetic data with diverse models leads to better generalization performance
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e Question 1:
o How to design the candidate pool of models to learn from synthetic data?

e Question 2:
o Can we learn a good synthetic set using only a few models?



Overview

e Question 1:
o How to design the candidate pool of models to learn from synthetic data?

e Answer 1:
o Early-stage models are more efficient for gradient matching based dataset condensation methods

e Question 2:
o Can we learn a good synthetic set using only a few models?

e Answer 2:
o Yes! (weight perturbation on selected early-stage models)



Method: early-stage models

e Gradient guidance from randomly initialized networks:
o Insufficient and unstable
o Requires many epochs or a large number of models

e Well-trained models have small gradients [1].
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e Model augmentation

o  Ultilize pre-trained information
o Ensemble is helpful: pre-train a small set of models
o Early stage models have large gradients = alleviating gradient vanishing challenge

[1] Dataset Condensation via Efficient Synthetic-Data Parameterization, ICML 2022.



Method: weight perturbation

e Data augmentation: perturbing training data to induce diversity

e Weight perturbation to perturb early-stage network weights
o Diversify the feature space
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Method

e Early-stage models + weight perturbation
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Results

Dataset Method I ImlgéCls =) Speed Up  Acc. Gain
Full Dataset 88.1 88.1 88.1 - -

IDC [27] 50.6 (21.7h) 67.5 (22.2h)  74.5 (29.4h) 1.00x 1.00x

CAFE [56] 30.3 46.3 55.5 - 0.54 x

CIFAR-10 DSA [62] 28.2 (0.09h) 52.1 (1.94h) 60.6 (11.1h) 85.0x 0.71x
DM [63] 26.0 (0.25h) 48.9 (0.26h)  63.0 (0.31h) 89.0x 0.69x

™ [4] 46.3 (6.35h) 65.3 (6.69h)  71.6 (7.3%h) 3.57x 0.94x

Ourss 49.2 (4.44h) 67.1 (445h) 73.8 (6.11h) 4.90x 0.99x

Ours)q 48.5 (2.22h) 66.5 (2.23h)  73.1 (3.05h) 9.77x 0.97x

Full Dataset 56.2 56.2 56.2 - -

IDC [27] 25.1 (125h) 45.1 (127h) - 1.00x 1.00x

CAFE [56] 12.9 27.8 37.9 - 0.56 x

CIFAR-100 DSA [62] 13.9 (0.83h) 323 (17.5h) 42.8 (221.1h) 78.9x 0.63x
DM [63] 11.4 (1.67h) 29.7 (2.64h)  43.6 (2.78h) 61.4x 0.55x

™ [4] 24.3 (7.74h) 40.1 (9.47h) 47.7 () 14.7x 0.92x

Ourss 29.8 (25.1h) 45.6 (25.6h) 52.6 (42.00h) 4.97x 1.10x

Ours)q 29.4 (12.5h) 45.2 (12.8h) 52.2 (21.00h) 9.96 X 1.09%

Ours;g 29.1 (6.27h) 44.1 (6.40h) 52.1 (10.50h) 19.9x 1.07x




Results
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Figure 3. Performance comparison across a varying number of training steps.
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Figure 4. Performance comparison across varying training time and FLOPs.
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