
Why is the State of Neural Network Pruning so Confusing?
On the Fairness, Comparison Setup, and Trainability in Network Pruning

Northeastern University, Boston, MA
Mar 19, 2023

Huan Wang Can Qin Yue Bai Yun Fu

We are in the era of large models
(and they are growing quickly)

Trend of sizes of state-of-the-art NLP models over time
src:
https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-tr
ain-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-langu
age-model/

A widely-spread diagram (turns out to be
misinformation), indicating the giant size of
GPT-4 to come

Do we really need so many parameters? No!

Model Compression or Efficient Deep Learning
Make the model smaller/faster while maintaining the performance

Network Architecture

Layer

Weight

Bit

(3) Matrix Decomposition

(2) Quantization

Hierarchical Redundancy of DNNs

• (5) Hand-crafting (e.g., SqueezeNet[1], MobileNet[2], ShuffleNet[3])
• (5) Neural Architecture Searching (NAS) (e.g., EfficientNet [4])
• (4) Knowledge Distillation

Categories of Model Compression

(1) Pruning

[1] Iandola, Forrest N., et al. "Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size." arXiv preprint arXiv:1602.07360 (2016).
[2] Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017).
[3] Zhang, Xiangyu, et al. "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices." (2017).
[4] Tan, Mingxing, and Quoc V. Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." In ICML (2019).

granularity

large

small

Methods fall into 5 groups: (1) Pruning (2) Quantization (3) Low-rank decomposition (4) Knowledge distillation (5)
Compact architecture design or search (AutoML: NAS, HPO) (6) Arithmetic complexity reduction

[AlexNet, 2012, NIPS]

History of Network Pruning

● Pruning is probably the earliest mode compression method among the five.
○ In 1986, BP was popularized for training neural networks [Rumelhart et al., Nature, 1986].
○ In 1987, 1st NIPS (now NeurIPS) conference.
○ In 1988, pruning papers emerged.
○ In 1989 NIPS, LeCun et al. proposed Optimal Brain Damage for pruning.
○ Past focus: Generalization, not faster. Nowadays: smaller and faster (because generalization problem

has been largely resolved via big model + big data + NVIDIA GPUs)

[Han et al., NIPS, 2015] src: https://github.com/MingSun-Tse/Efficient-Deep-Learning

Regularity (Constraint)-Performance:
It’s all about trade-off!

src:
https://developer.nvidia.com/blog/accelerating-infer
ence-with-sparsity-using-ampere-and-tensorrt/

Free lunch -- 2:4 sparsity on A100 GPUs.

What is considered “structured” depends on the hardware condition

Four Key Questions in Network Pruning

src: [Wang et al., IJCAI, 2022]

[Wang et al., IJCAI, 2022] Wang, Huan, et al. "Recent Advances on Neural Network Pruning at Initialization." in IJCAI, 2022

Arguably the most
important questions

Pruning is typically conducted on pretrained model, while recently
some emerging pruning fashions are not. They prune randomly
initialized models -- Pruning at Initialization.

[Liu et al., ICLR, 2019]

Src: [Wang et al., IJCAI, 2022] “Recent Advances on Neural Network Pruning at Initialization”

Pretty many mysteries in the area of network (filter) pruning.
This work is to unveil two of them.

Play a maze game!

Image you know nothing about network pruning and try to find some
fantastic pruning algorithm to compress / accelerate your model.

“I know nothing about network pruning”

Q1: How much progress you expect in the past 6 years for filter/channel pruning?
ResNet50 on ImageNet, 2x - 3x speedups, top-1 accuracy

❏ over 2%?
❏ 1-2%? ?
❏ 0.5-1% ?
❏ 0.1-0.5%?

Q1: How much progress you expect in the past 6 years for filter/channel pruning?
ResNet50 on ImageNet, 2x - 3x speedups, top-1 accuracy

❏ over 2%?
❏ 1-2%? ?
❏ 0.5-1% ?
❏ 0.1-0.5%!

At 2 ~ 3x speedup: The best method only reports
0.16% ~ 0.35% top-1 accuracy advantage vs.
L1-norm pruning [Li et al., ICLR, 2017], which is
typically considered a very basic filter pruning
method.

No particular tricks used. If any, a larger fine tuning
LR (0.01 vs. 0.001) and 90 epochs step-decay LR
schedule.

[Blalock et al., MLsys, 2020]

M2: No value of the pretraining step in
network filter pruning, which radically
challenges the past belief.

There is no point doing filter pruning!
Just train from scratch!

The best way to do pruning is do nothing.

Is that true? Why I still see filter pruning papers popping up
since ICLR’19?

“Use your common sense”

Road Map
● Comparison setups in pruning papers.
● Unveil M2 first (as we’ll show, M2 reduces to M1).
● Then unveil M1. Keyword: Network trainability
● Conclusion and takeaways.

Pruning History 101

Overview of our investigation

Starting from here, we unveil the M2
first: Value of network filter pruning

What made them think so?

Liu et al. just interpreted their experimental results faithfully.

[Liu et al., ICLR, 2019]

We reproduced their experiments!

[Liu et al., ICLR, 2019]

Devil is in the details

Devil is in the details

[Li et al., ICLR, 2017]

Ha, turns out that Li et al. [2017, ICLR] used a (severely) sub-optimal LR
schedule, passed on by Liu et al. [2019, ICLR]. So simple!

What would scratch training be, compared to L1-norm pruning using a
better fine tuning LR? Will that lead to a different conclusion?

Value of pruning depends on if we are allowed to use a larger fine tuning LR.

One table to show them all

❏ Now we know the value of pruning argument largely depends on the
fine-tuning LR setting.

❏ If a larger fine tuning LR is allowed to use, their conclusion is wrong.
Otherwise, mostly correct.

❏ Why? Why a larger fine tuning LR improves the performance significantly?

Starting from here, we unveil the M1: Why a larger
fine-tuning LR “improves” the performance so significantly?

Just plot the learning curve

Is the LR decayed too early?

Just plot the learning curve (Cont’d)

Trainability of the pruned model is damaged, slowing down the optimization. The pruned
model during finetuning does not converge at all!

Just plot the learning curve (Cont’d)

 What really happens?
● A larger LR does not really “improve” the performance. What really

happens is, a larger LR accelerates the optimization process, making the
higher performance observed earlier.

● Past pruning works used sub-optimal hyper-parameters, rendering their
results under-estimated.

[Liu et al., ICLR, 2021]

[Le and Hua, ICLR, 2021]

[Renda, ICLR, 2021]

Turns out we never had an agreement about even the most basic concepts!

Why the trap is so covert?

● Using the same setting for different pruning ratios? Not very correct
● At different sparsity levels, the trainability is damaged to different

degrees. The hyper-parameters (esp., fine tuning LR and epochs) should
be adjusted accordingly.

Conclusion

Summary of this paper:
● We are motivated by the two mysteries in network (filter) pruning.
● Sort out the comparison setups for later experimenting under a strict control.
● Unveil the two mysteries: M2 → M1
● Trainability is the key to unveil M1.

Takeaways:
● Why is the state of neural network pruning so confusing? (1) Non-standard comparison setups (2)

Unawareness of the role of trainability.
● Which comparison setup should I choose? >=S3.2.
● Reporting all finetuning details are necessary and should be standardized!
● The observation that a larger fine tuning LR “improves” pruning performance is largely a misinterpretation.
● L1-norm pruning is pretty strong!
● The term finetuning is not suitable.

Thanks! Questions?
Code:

https://github.com/mingsun-tse/why-the-state-of-pruning-so-confusing

