Why is the State of Neural Network Pruning so Confusing?
On the Fairness, Comparison Setup, and Trainability in Network Pruning

Huan Wang Yue Bai

Northeastern University, Boston, MA
Mar 19, 2023

We are in the era of large models
(and they are growing quickly)

1000

GPT-3 (1758B)

100 Megatron-Turing NLG (530B)

Megatron-LM (8.3B)
Turing-NLG (17.2B)

10

GPT-2 (1.5B)

Model Size (in billions of parameters)

BERT-Large (340M) =

175,000,000,000 100,000,000,000,000

0.1

ELMo (94M)

0.01
2018 2019 2020 2021 2022

Trend of sizes of state-of-the-art NLP models over time A widely-spread diagram (turns out to be
misinformation), indicating the giant size of
GPT-4 to come

Do we really need so many parameters? No!

Model Compression or Efficient Deep Learning
Make the model smaller/faster while maintaining the performance

Categories of Model Compression

Methods fall into 5 groups: (1) Pruning (2) Quantization (3) Low-rank decomposition (4) Knowledge distillation (5)
Compact architecture design or search (AutoML: NAS, HPO) (6) Arithmetic complexity reduction

large * (5) Hand-crafting (e.g., SqueezeNet!*, MobileNet!?], ShuffleNet!®))
* (5) Neural Architecture Searching (NAS) (e.g., EfficientNet [4])
* (4) Knowledge Distillation

(3) Matrix Decomposition —
granularity = ><><
(1) Pruning 13 dense’| |densd|
small (2) Quantization

[AlexNet, 2012, NIPS]

Hierarchical Redundancy of DNNs

[1] landola, Forrest N., et al. "Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size." arXiv preprint arXiv:1602.07360 (2016).
[2] Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017).

[3] Zhang, Xiangyu, et al. "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices." (2017).

[4] Tan, Mingxing, and Quoc V. Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." In ICML (2019).

History of Network Pruning

before pruning

pruning
synapses

pruning
neurons

-->

after pruning

[Han et al., NIPS, 2015]

Papers [Pruning and Quantization]

1980s,1990s

» [1988-NIPS-A back-propagation algorithm with optimal use of hidden units
» [1988-NIPS-Skeletonization: A Technique for Trimming the Fat from a Network via Relevance Assessment
» [1988-NIPS-What Size Net Gives Valid Generalization?

+ 1989-NIPS-Dynamic Behavior of Constained Back-Propagation Networks

* [1988-NIPS-Comparing Biases for Minimal Network Construction with Back-Propagation
* 1989-NIPS-Optimal Brain Damage

* 1990-NN-A simple procedure for pruning back-propagation trained neural networks

* 1993-ICNN-Optimal Brain Surgeon and general network pruning

src: https://github.com/MingSun-Tse/Efficient-Deep-Learning

e Pruning is probably the earliest mode compression method among the five.
In 1986, BP was popularized for training neural networks [Rumelhart et al., Nature, 1986].
In 1987, 1st NIPS (now NeurlPS) conference.

©)

O O O O

In 1988, pruning papers emerged.

In 1989 NIPS, LeCun et al. proposed Optimal Brain Damage for pruning.
Past focus: Generalization, not faster. Nowadays: smaller and faster (because generalization problem
has been largely resolved via big model + big data + NVIDIA GPUs)

Structured pruning (hardware-friendly)

® Im2col: Convolutional kernels are expanded into weight matrices during convolution to leverage BLAS libraries.
® Popularized by deep learning framework Caffe.

ﬂ . i . | non-zero weight zero weight
e) | (e e B | W | ma. .
":-_ weight matrix i i weight matrix i ﬁ weight matrix -I: :,.-I: :’..D.‘:
= e | oy noww (N, CHW) | HE B B B
i | ' | Unstructured pruning: much
conv kernel conv kernel conv kernel o .
(N, C, H, W) (N, C, H, W) (N, C, H, W) compression, but little speedupt
(a) filter sparsity/row sparsity (b) shape sparsity/column sparsity (c) channel sparsity
Structured pruning Regularity (Constraint)-Performance:

It’s all about trade-off!
You can choose anything to prune, depending on your specific need:

» Compression (storage reduction): element-wise pruning (unstructured pruning)
» Speedup: weight group (two choices: filter/row/channel pruning, column/shape-wise pruning)

[1] Wen et al., "Learning structured sparsity in deep neural networks®, In NeurlPS, 2016

What is considered “structured” depends on the hardware condition

Sparse Tensor Cores accelerate 2:4 fine-
grained structured sparsity

The[NVIDIA A100 GPU hdds support for|fine-grained structured sparsity|to

its Tensor Cores. Sparse Tensor Cores accelerate a|2:4 sparsity patternl In

each contiguous block of four values, two values must be zero. This naturally
leads to a sparsity of 50%, which is fine-grained. There are no vector or block
structures pruned together. Such a regular pattern is easy to compress and

has a low metadata overhead (Figure 1).

Sparse matrix W Compressed matrix W

v

G C]2 wlp Gy 2

Nt

Non-zero 2-bits
data values indices

Figure 1. A 2:4 structured sparse matrix W, and its compressed representation

Free lunch -- 2:4 sparsity on A100 GPUs.

Src:
https://developer.nvidia.com/blog/accelerating-infer
ence-with-sparsity-using-ampere-and-tensorrt/

Four Key Questions in Network Pruning

1. Sparsity structure -- “What to prune”: structured
pruning vs. unstructured pruning
2. Pruning ratio -- “How many connections to prune’

3. Pruning criterion -- “Using what criterion to
consider a weight important/unimportant”

4. Pruning schedule -- “How to schedule the pruning
process”: one-shot pruning vs. iterative / progressive
pruning

src: [Wang et al., I[JCAI, 2022]

Arguably the most
important questions

[Wang et al., IUCAI, 2022] Wang, Huan, et al. "Recent Advances on Neural Network Pruning at Initialization." in IJCAI, 2022

Pruning is typically conducted on pretrained model, while recently
some emerging pruning fashions are not. They prune randomly
initialized models -- Pruning at Initialization.

[Training H Pruning J%[Fine-tuning}
-

Figure 1: A typical three-stage network pruning
pipeline.

[Liu et al., ICLR, 2019]

Background: What is Pruning at Initialization (Pal)?

Prune connections

Prune neurons

Pretrain

Finetune
-@ —_—
e ®
:“' ‘
-@
Random dense network Trained dense network Pruned sparse network Final sparse network

The “conventional” 3-step pruning pipeline: Pruning after training (PaT)
Pruning at initialization (Pal) saves the first step, while maintaining comparable performance to PaT.

History Sketch: Debut of Pal (2 papers)

O Lottery Ticket Hypothesis (LTH) [Frankle and Carbin, ICLR, 2019] (Best paper award)
O Single-shot Network Pruning (SNIP) [Lee et al., ICLR, 2019]

_—» Post-selected
Get mask via MP (magnitude pruning)

 LTH: FO (Rand, Dense) =» F1 (Trained, Dense) = Mask1;|F0 * Maskl & F2 (Rand, Sparse) =» F3 (Trained, Sparse)

e SNIP: FO * Mask2 =» F2 (Rand, Sparse) =® F3 (Trained, Spatse)

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

> Pre-selected

Non-trivially sparse networks can be trained to full accuracy in isolation.
“Pal = Dense”

Src: [Wang et al., IJCAI, 2022] “Recent Advances on Neural Network Pruning at Initialization”

Pretty many mysteries in the area of network (filter) pruning.
This work is to unveil two of them.

Play a maze game!

Image you know nothing about network pruning and try to find some
fantastic pruning algorithm to compress / accelerate your model.

“l know nothing about network pruning”

Q1: How much progress you expect in the past 6 years for filter/channel pruning?
ResNet50 on ImageNet, 2x - 3x speedups, top-1 accuracy

over 2%?
1-2%7? ?
0.5-1% ?
0.1-0.5%7

L 0L

Q1: How much progress you expect in the past 6 years for filter/channel pruning?
ResNet50 on ImageNet, 2x - 3x speedups, top-1 accuracy

over 2%?
1-2%7? ?
0.5-1% ?
0.1-0.5%!

[y Ny Ny

Table 1. Top-1 accuracy (%) benchmark of filter pruning with
ResNet50 [20] on ImageNet [6]. Simply by using a better fine-
tuning LR schedule, we manage to revive a 5-year-ago baseline
filter pruning method, L1-norm pruning [32], making it match or
beat many filter pruning papers published in recent top-tier venues.
Note, we achieve this simply by using the common step-decay LR
schedule, 90-epoch finetuning, and standard data augmentation,
no any advanced training recipe (like cosine annealing LR) used.
This papers study the reasons and lessons behind this pretty con-
founding benchmark situation in filter pruning.

Method Pruned acc. (%) Speedup
SFP [22] 15ca1r18 74.61 1.72x
DCP [61] yeurtps’is 74.95 2.25%
GAL-0.5 [37] cyerr 10 71.95 1.76 x
Taylor-FO [42] cyprr19 74.50 1.82x
CCP-AC [45] tcmurio 75.32 2.18x%
ProvableFP [35] rcrrr 20 7321 1.43x%
HRank [36] cypr’ 20 74.98 1.78%
GReg-1 [56] 1crrr21 75.16 231
GReg-2 [56] 1crrra1 75.36 2.31x
CC [34] cver’ 21 75.59 2.12x
Li-norm [32] 1cpr- 17 (our reimpl.) 75.24 2.31x
GAL-LPW sencas. . 69.88 2.59x
Factorized [33] cyerr19 74.55 2.33%
LFPC [21] cvpr’ 20 74.46 2.55%
GReg-1 [56] 1crrr21 74.85 2.56%
GReg-2 [56] 1crrr21 74.93 2.56 x
CC [34] cver’ 21 74.54 2.68 x

Li-norm [32] 1cpr- 17 (our reimpl.) 74.77 2.56 %

At 2 ~ 3x speedup: The best method only reports
0.16% ~ 0.35% top-1 accuracy advantage vs.
L1-norm pruning [Li et al., ICLR, 2017], which is
typically considered a very basic filter pruning
method.

No particular tricks used. If any, a larger fine tuning
LR (0.01 vs. 0.001) and 90 epochs step-decay LR
schedule.

WHAT IS THE STATE OF NEURAL NETWORK PRUNING?

Davis Blalock ! Jose Javier Gonzalez Ortiz”*' Jonathan Frankle'! John Guttag'

ABSTRACT

Neural network pruning—the task of reducing the size of a network by removing parameters—has been the
subject of a great deal of work in recent years. We provide a meta-analysis of the literature, including an overview
of approaches to pruning and consistent findings in the literature. After aggregating results across 81 papers
and pruning hundreds of models in controlled conditions, our clearest finding is that the community suffers
from a lack of standardized benchmarks and metrics. This deficiency is substantial enough that it is hard to
compare pruning techniques to one another or determine how much progress the field has made over the past
three decades. To address this situation, we identify issues with current practices, suggest concrete remedies, and
introduce ShrinkBench, an open-source framework to facilitate standardized evaluations of pruning methods. We
use ShrinkBench to compare various pruning techniques and show that its comprehensive evaluation can prevent
common pitfalls when comparing pruning methods.

[Blalock et al., MLsys, 2020]

RETHINKING THE VALUE OF NETWORK PRUNING
[Training H Pruning }{ Fine-tuning:]

Zhuang Liu'*, Mingjie Sun®*7, Tinghui Zhou', Gao Huang?, Trevor Darrell
1University of California, Berkeley 2Tsinghua University) , ,
Figure 1: A typical three-stage network pruning

pipeline.
ABSTRACT

Network pruning is widely used for reducing the heavy inference cost of deep

models in low-resource settings. A typical pruning algorithm is a three-stage

pipeline, i.e., training (a large model), pruning and fine-tuning. During prun-

ing, according to a certain criterion, redundant weights are pruned and important . s .
weights are kept to best preserve the accuracy. In this work, we make several M2: No Va_lue of th? pretra_mmg sfep n
surprising observations which contradict common beliefs. For all state-of-the-art network filter pruning, which radically
structured pruning algorithms we examined, fine-tuning a pruned model only gives challenges the past belief.

comparable or worse performance than training that model with randomly initial-

ized weights. For pruning algorithms which assume a predefined target network

architecture, one can get rid of the full pipeline and directly train the target net- There is no point doing filter pruning!
work from scratch. Our observations are consistent for multiple network architec- : I

tures, datasets, and tasks, which imply that: 1) training a large, over-parameterized Just train from scratch!

model is often not necessary to obtain an efficient final model, 2) learned “impor-

tant” weights of the large model are typically not useful for the small pruned

model, 3) the pruned architecture itself, rather than a set of inherited “important”

weights, is more crucial to the efficiency in the final model, which suggests that in

some cases pruning can be useful as an architecture search paradigm. Our results

suggest the need for more careful baseline evaluations in future research on struc-

tured pruning methods. We also compare with the “Lottery Ticket Hypothesis”

(Frankle & Carbin, 2019), and find that with optimal learning rate, the “winning

ticket” initialization as used in Frankle & Carbin (2019) does not bring improve-

ment over random initialization.

The best way to do pruning is do nothing.

Is that true? Why | still see filter pruning papers popping up
since ICLR’197?

“Use your common sense”

Road Map

Comparison setups in pruning papers.

Unveil M2 first (as we’ll show, M2 reduces to M1).
Then unveil M1. Keyword: Network trainability
Conclusion and takeaways.

No. Comparison setups

S1

Compare performance or performance drop on the same
dataset and network at the same compression or speedup rate

S2 +Same base model

531 +Same base model
"~ +Same finetuning epochs

+Same base model
+Same finetuning LR schedule

+Same base model
S4 .1 +Same finetuning LR schedule
+Same pruning epochs

+Same base model

S4 .2 +Same finetuning LR schedule
+Same pruning LR schedule

SX-A +Same epochs of “pretraining + pruning + finetuning”
SX-B +Same FLOPs of “pretraining + pruning + finetuning”

Pruning History 101

S1: Given the same

Dataset
Network structure
Total sparsity/speedup

Table 3. Summary of finetuning epochs and LR schedules of
many filter pruning papers published in recent top-tier venues,
with ResNets [26]. The default dataset is ImageNet [10]; other
datasets are explicitly pointed out.

Method #Epochs LR schedule

SSL [82]yeurtrss 16 (CIFAR10) - 0.01

Lyi-norm [42])tcirr 17 20 0.001, fixed

DCP [88]yeur1ps’ 18 60 0.01, step (36/48/54)
GAL-0.5/1 [47])cvpr 19 30 0.01, step decay (10/20)
Taylor-FO [55]cyprr19 ~25 0.01, step decay (10/20)
Factorized [43]cypr 19 90 0.01, step decay (30/60)
CCP-AC [60]1cmpr 19 100 0.001, step decay (30/60/90)
HRank [46] cyprr 20 30x#layers 0.01, step decay (10/20)
GReg-1/2 [79] 1c1rr 21 90 0.01, step decay (30/60/75)
ResRep [14] 1ceyr 21 180 0.01, cosine annealing

Li-norm [42] 1¢1rr17 (our reimpl.) 90 0.01, step decay (30/60/75)

S1: Given the same S2: 81 + Keep P Tour pratig ‘A Unveil M1: Network trainability is damaged

comparison setups o : :
Dataset the same base Ml-II\)'IZ: o m)lr)steries §3:82 + by thc' sparslf.;n:}g action, slowing down the
Network structure model (M1 in filter pruning Keep the finetuning optimization; larger LR makes the

model converge faster, thus better performance

Total sparsity/speedup arises at this same : . .
ifvi i i b d earlier. The perf: t reall
setup) Spatsifying action finetuning ifbf(;o:-:;i. er. The performance is not really

A

Random model Pretraining Base model Pruning Pruned model Finetuning
(big dense) (big dense) (big dense) method
Pruning pipeline
Ml: A larger
- . M2 holds under S3, .
M2: Training the pruned model from scratch with not hold under S2. To finetuning LR

adjusted (typically prolonged) epochs can produce » can significantly

the final model with similar performance. unve{l e “boost” the final
unveil M1 first.
performance.

Final model |
(small dense)

l Pruned model | Training with adjusted epochs

(small dense)

S4: §3 + Keep the same pruning cost

Overview of our investigation

Starting from here, we unveil the M2
first: Value of network filter pruning

What made them think so?

L;-norm based Filter Pruning (Li et al., 2017) is one of the earliest works on filter/channel pruning
for convolutional networks. In each layer, a certain percentage of filters with smaller L;-norm will
be pruned. Table 1 shows our results. The Pruned Model column shows the list of predefined target
models (see (Li et al., 2017) for configuration details on each model). We observe that in each
row, scratch-trained models achieve at least the same level of accuracy as fine-tuned models, with
Scratch-B slightly higher than Scratch-E in most cases. On ImageNet, both Scratch-B models are
better than the fine-tuned ones by a noticeable margin.

Dataset Model Unpruned Pruned Model Fine-tuned Scratch-E Scratch-B
VGG-16 | 93.63 (£0.16) VGG-16-A 9341 (£0.12) 93.62 (£0.11) 93.78 (£0.15)
ResNet-56-A 92.97 (£0.17) 92.96 (£0.26) 93.09 (£0.14)
ResNet-56 | 93.14 (£0.12

CIFAR-10 | ¢ (£012) ResNet-56-B 92.67 (£0.14) 92.54 (£0.19) 93.05 (-0.18)
ResNet-110 | 93.14 (+0.24) ResNet-110-A 93.14 (£0.16) 93.25 (£0.29) 93.22 (4+0.22)
ResNet-110-B 92.69 (£0.09) 92.89 (£0.43) 93.60 (£0.25)

ImageNet | ResNet-34 73.31 ResNet-34-A 72.56 T2.77 73.03

ResNet-34-B 72.29 12.55 7291

Table 1: Results (accuracy) for L;-norm based filter pruning (Li et al., 2017). “Pruned Model” is the model
pruned from the large model. Configurations of Model and Pruned Model are both from the original paper.

[Liu et al., ICLR, 2019]

Liu et al. just interpreted their experimental results faithfully.

We reproduced their experiments!

Implementation Unpruned (%) , Pruned model Scratch (%) Pruned-Finetuned (%) Finetuning LR schedule

= 5 ResNet-34-A (Not reported) 72.56 20 epochs, 0.001, fixed

Onginal paper (23] B2 ResNet-34-B (Not reported) 12.17 20 epochs, 0.001, fixed

. ResNet-34-A 73.031 72.56 20 epochs, 0.001, fixed

Retnniang [0 a3l ResNet-34-B 72.911 72.29 20 epochs, 0.001, fixed

72.91 20 epochs, 0.001, fixed

. 72.94 90 epochs, 0.001, fixed

Our impl. 13.23 ResNet-34-A 73.62 73.88 90 epochs, 0.001, decay
Y N (O 7388 90 epochs, 0.01, decay _

72.50 20 epochs, 0.001, fixed

¢ 72.58 90 epochs, 0.001, fixed

Our impl. 73.23 ResNet-34-B 73:33 73 61 90 epochs, 0,001, decay

73.67 90 epochs, 0.01, decay

Table 4. Top-1 accuracy comparison of different implementations of the Li-norm pruning [28]. Network: ResNet-34. Dataset: ImageNet.
THere we cite the best scratch-training results of [30] (i.e., Scratch-B). We adopt the torchvision models as the unpruned models following
common practices. The main point here is that [30] draws the conclusion that scratch training is better than pruning because of an improper
finetuning LR scheme. With proper finetuning LR schemes (“90 epochs, 0.001, decay” or “90 epochs, 0.01, decay”), pruning is actually
better than scratch training. Please refer to Sec. 3.4 for detailed discussions.

& Eric-mingjie / rethinking-network-pruning | public

| @Watch 34 ~ | % Fork 304 ~ Yy Star 14k ~

<> Code (©) Issues 21 i Pullrequests () Actions [J Projects () Security |~ Insights

Devil is in the details

For random weight initialization, we adopt the scheme proposed in (He et al., 2015). For results of
models fine-tuned from inherited weights, we either use the released models from original papers
(case 3 above) or follow the common practice of fine-tuning the model using the lowest learning rate
when training the large model (Li et al., 2017; He et al., 2017b). For CIFAR, training/fine-tuning
takes 160/40 epochs. For ImageNet, training/fine-tuning takes 90/20 epochs. For reproducing the
results and a more detailed knowledge about the settings, see our code at: https://github.
com/Eric—-mingjie/rethinking-network—-pruning.

[Liu et al., ICLR, 2019]

Devil is in the details

4 EXPERIMENTS

We prune two types of networks: simple CNNs (VGG-16 on CIFAR-10) and Residual networks
(ResNet-56/110 on CIFAR-10 and ResNet-34 on ImageNet). Unlike AlexNet or VGG (on ImageNet)
that are often used to demonstrate model compression, both VGG (on CIFAR-10) and Residual
networks have fewer parameters in the fully connected layers. Hence, pruning a large percentage
of parameters from these networks is challenging. We implement our filter pruning method in
Torch7 (Collobert et al. (2011)). When filters are pruned, a new model with fewer filters is created
and the remaining parameters of the modified layers as well as the unaffected layers are copied into
the new model. Furthermore, if a convolutional layer is pruned, the weights of the subsequent batch
normalization layer are also removed. To get the baseline accuracies for each network, we train each
model from scratch and follow the same pre-processing and hyper-parameters as ResNet (He et al.
(2016)). For retraining, we use a constant learning rate 0.001 and retrain 40 epochs for CIFAR-10
and 20 epochs for ImageNet, which represents one-fourth of the original training epochs. Past work
has reported up to 3 x original training times to retrain pruned networks (Han et al. (2015)).

[Li et al., ICLR, 2017]

Ha, turns out that Li et al. [2017, ICLR] used a (severely) sub-optimal LR
schedule, passed on by Liu et al. [2019, ICLR]. So simple!

What would scratch training be, compared to L1-norm pruning using a
better fine tuning LR? Will that lead to a different conclusion?

One table to show them all

Table 4. Top-1 accuracy (%) comparison between L -norm pruning [42] and training from scratch with ResNet34 on ImageNet100. Each
result is averaged by at least three random runs. The learning rate (LR) schedule of scratch training is: Initial LR 0.1, decayed at epoch
30/60/90/105 by multiplier 0.1, total: 120 epochs (top-1 accuracy of dense ResNet34: 84.56%, FLOPs: 3.66G). “P30F90, 1e-1" means the
model is pruned at epoch 30 and finetuned for another 90 epochs with initial finetune LR 1e-1 (please refer to our supplementary material
for the detailed LR schedule); the others can be inferred likewise. The best result within each comparison setup is highlighted in bold.

Pruning ratio 10% 30% 50% 70% 90% 95%
FLOPs (G, speedup: kx) 330(1.11x) 2.59 (1.41x) 1.90 (1.93 %) 1.19 (3.09x) 0.48 (7.68x) 0.30(12.06x%)
Scratch training 83.681+0 38 83.314+0.13 82.90+0.16 82.4510.13 79.37+0.76 76.67+0.90
@ Ll-norm (PISFIOS, le-l) 83.95:|:0_17 84.01:;__0_23 83.87:t0_44 82.93:;:0_10 79.86;&0.11 77.41:|:0_11
@ Ll-norm (P3OF90, 16-2) 83.88i0,07 84.00i0_22 83.29:}:0.14 82.61:5:0'07 80.41i0_32 77.645:0,39
@ Ll-norm (P45F75, 16-2) 83.56:|:0_03 83.95i0_14 83.28:}:0‘08 82.47:;:0_12 79.88:|:0_10 76.17:|:0.21
@ Ll-norm (P60F60, 16-3) 84-2110.07 83.8710.09 82.90:1;0.10 81.24i0_17 77.29:1:0_05 70.53;&0‘37
@ Ll—norm (P75F45, 16-—3) 84.24:1:0‘04 83.47:450_12 82.45:}:0.14 80.81:}:0_09 73.94:]:0_24 64.98:|:0_31
@ Ll-norm (P90F30, 16-4) 840910 07 82.47i0 02 79.70:}:0 00 74.87:}:0 19 492310 21 298910 26
"""" Li-norm (P30F90, le-1) 85271013 85374019 8548.01s 83.83.017 815641020 79571015
Ll-norm (P6OF60, 16-2) 83.72:|:0 14 8388:|:0 07 83.67:}:0 11 8296i0 23 80.78:|:0 23 77.81:|:0 25
Ll-norm (P90F30, 16-2) 83.91:|:0 08 84.02:&0 20 83.41:}:0 15 82.91:§:0 12 79.43:]:0 07 75.20:|:0 23
~ ® L;-norm (P30/kF90, le-1) 85451024 85.064024 84.85.03 83.64.000 79.65.031 75794028
@ Ll-norm (P30/k'F90, 16-2) 8340:|:0 04 8269:t0 27 8216:}:0 03 7997:!:0 16 7476:1:0 24 7061j:0 52

® Under comparison setup S4 .2 (same overall LR schedule),
increased), ® Under comparison setup SX—B (same total FLOPs).

Under comparison setup SX—-A (same total epochs; finetuning LR

Value of pruning depends on if we are allowed to use a larger fine tuning LR.

No. Comparison setups

Compare performance or performance drop on the same
dataset and network at the same compression or speedup rate
S2 +Same base model

+Same base model

+Same finetuning epochs
"""""" +Same basemodel
+Same finetuning LR schedule
+Same base model
S4 .1 +Same finetuning LR schedule
+Same pruning epochs

+Same base model

S4 .2 +Same finetuning LR schedule
+Same pruning LR schedule
SX-A +Same -epochs of “pretraining + pruning + finetuning”
SX-B +Same FLOPs of “pretraining + pruning + finetuning”

Now we know the value of pruning argument largely depends on the
fine-tuning LR setting.

If a larger fine tuning LR is allowed to use, their conclusion is wrong.
Otherwise, mostly correct.

Why? Why a larger fine tuning LR improves the performance significantly?

Starting from here, we unveil the M1: Why a larger
fine-tuning LR “improves” the performance so significantly?

|

Is the LR decayed too early?

Just plot the learning curve

ResNet34, ImageNet100, PR 95%

o0
)

curacy (%)
@)
S

& 40 .
20_1‘ | I.-_T ll ‘ ‘I_ | |
0 10 20 30 40 50 60
Epoch

(a) P60F60, 1e-3

Just plot the learning curve (Cont’d)

ResNet34, ImageNet100, PR 95%

T T T

i
1L L

L iy [o
.......m.o.ooouo.o i

Test accuracy (%)

-l PR TR T R Y S S T

[\

-
—

.

0 50 100 150 200 250
Epoch

(b) P60F60, 1e-3 (+180 epochs)

Trainability of the pruned model is damaged, slowing down the optimization. The pruned
model during finetuning does not converge at all!

Just plot the learning curve (Cont’d)

ResNet34, ImageNet100, PR 95%

a T3
—_ 30 i Arr kel & e e 08 66 9@ C JEg
= ,’: ! 4
& AL
TS

§ v
o — s -
= 20 . * T T
o r .
(5] I . ¢
= 10 B .

I : 3

. - | R N
Bl R Y T VIR o] T S W W WEt GG S R W GIE e i VG VR SRRy W S R A Y

0 5 10 15 20 23 30
Epoch
(2.a) P9OF30, le-4
ResNet34, ImageNet100, PR 95%

L

RO | -
X []
> 60 F]
U - -
E!' L
S 40 :
< r 4
!
= 20F]

0 250 500 750 1000 1250 1500
Epoch
(2.b) POOF30, le-4 (+1485 epochs)

Table 5. Top-1 accuracy (%) comparison of different setups of
Li-norm pruning [42] with ResNet34 on ImageNet100. Pruning
ratio: 95%. TA: trainability accuracy (the metric used to measure
trainability; see Eq. (1)). This table shows, the performance gap
between a smaller LR and a larger LR is not fundamental. It can
be closed simply by training more epochs. The root cause that a
smaller LR appears to under-perform a larger LR is simply that
the model trained by the smaller LR does not fully converge.

Finetuning setup Top-1acc. (%) TA (%)
P30F90, le-1 79.57 10 15 88.00
P30F90, 1e-2 77.6410.39 77.45
P30F90, 1e-2 (+30 epochs) 79.1240.19 /
P30F90, 1e-2 (+60 epochs) 79.59. ¢ .05 /

- P60F60, le-2 77811005 8739
P60F60, 1e-3 70.5340.37 68.19
P60F60, 1e-3 (+60 epochs) 75.714+0.09 /
P60F60, 1e-3 (+120 epochs) 77.17+0.13 /
P60F60, 1e-3 (+180 epochs) 77.3310.09 /

- P9OF30,le-2 75204023 84.83
P90F30, 1e-4 29.8910 .26 37.93
P90F30, 1e-4 (+60 epochs) 60.69+¢.17 /
P90F30, 1e-4 (+270 epochs) 70.7840.16 /

P90F30, 1e-4 (+1485 epochs) 78.18 /

What really happens?
e Alarger LR does not really “improve” the performance. What really

happens is, a larger LR accelerates the optimization process, making the
higher performance observed earlier.

e Past pruning works used sub-optimal hyper-parameters, rendering their
results under-estimated.

Table 3. Summary of finetuning epochs and LR schedules of
many filter pruning papers published in recent top-tier venues,
with ResNets [26]. The default dataset is ImageNet [10]; other
datasets are explicitly pointed out.

Method #Epochs LR schedule

SSL [82]yeurtrs’ 16 (CIFAR10) - 0.01

Lyi-norm [42])1cirr 17 20 0.001, fixed

DCP [88]yeur1ps’ 18 60 0.01, step (36/48/54)
GAL-0.5/1 [47])cyprr 19 30 0.01, step decay (10/20)
Taylor-FO [55]cyprr 19 ~25 0.01, step decay (10/20)
Factorized [43]cvpr’ 19 90 0.01, step decay (30/60)
CCP-AC [60])1cmnr 19 100 0.001, step decay (30/60/90)
HRank [46] cvpr’ 20 30x#layers 0.01, step decay (10/20)
GReg-1/2 [79] 1c1rr 21 90 0.01, step decay (30/60/75)
ResRep [14] 1ccvr 21 180 0.01, cosine annealing

Li-norm [42] 1¢1rr 17 (our reimpl.) 90 0.01, step decay (30/60/75)

1 INTRODUCTION

Over-parameterization is a widely-recognized property of deep neural networks (Denton et al., 2014;
Ba & Caruana, 2014), which leads to high computational cost and high memory footprint for infer-
ence. As a remedy, network pruning (LeCun et al., 1990; Hassibi & Stork, 1993; Han et al., 2015;
Molchanov et al., 2016; Li et al.,2017) has been identified as an effective technique to improve the
efficiency of deep networks for applications with limited computational budget. A typical procedure
of network pruning consists of three stages: 1) train a large, over-parameterized model (sometimes
there are pretrained models available), 2) prune the trained large model according to a certain crite-
rion, and 3) fine-tune the pruned model to regain the lost performance.

Generally, there are two common beliefs behind

this pruning procedure. First, it is believed that
starting with training a large, over-parameterized L Training H Pruning }—{ Fine-tuning ’

network is important (Luo et al., 2017; Carreira-

Perpinan & Idelbayev, 2018), as it provides a high-
performance model (due to stronger representation Figure 1: A typical three-stage network pruning
& optimization power) from which one can safely pipeline.

remove a set of redundant parameters without sig-

nificantly hurting the accuracy. Therefore, this is usually believed, and reported to be superior to
directly training a smaller network from scratch (Li et al., 2017; Luo et al., 2017; He et al., 2017b;
Yu et al., 2018) — a commonly used baseline approach. Second, both the pruned architecture and
its associated weights are believed to be essential for obtaining the final efficient model (Han et al.,

*Equal contribution.
TWork done while visiting UC Berkeley.

[Liu et al., ICLR, 2021]

. FINE-TUNING (FT) Fine-tuning is the most common retraining techniques (Han et al., 2015; Li
et al., 2016; Liu et al., 2019). In this approach, we continue train the pruned networks for ¢ epochs
with the|last (smallest) learning rate of original training.

. LEARNING RATE REWINDING (LRW) Renda et al. (2020) propose to reuse the learning rate
schedule of the original training when retraining pruned networks. Specifically, when retraining
for ¢ epochs, we reuse the learning rate schedule from the previous ¢ epochs, i.e., rewinding.

. SCALED LEARNING RATE RESTARTING (SLR): In this approach, we employ " learning rate
schedule that is proportionally identical to the standard training. For example, ... learning rate
is dropped by a factor of 10x at 50% and 75% of retraining epochs on CIFAR, which is akin to
original training learning rate adjustment. The original learning rate schedule can be found in
Appendix A.

. CycCLIC LEARNING RATE RESTARTING (CLR): Instead of using stepwise learning rate schedule
as scaled learning rate restarting, we leverage the 1-cycle (Smith & Topin, 2019), which is shown
to give faster convergence speed than conventional approaches.

[Le and Hua, ICLR, 2021]

ABSTRACT

Many neural network pruning algorithms proceed in three steps: train the network
to completion, remove unwanted structure to compress the network, and retrain
the remaining structure to recover lost accuracy. The standard retraining technique,
fine-tuning, trains the unpruned weights from their final trained values using a
small fixed learning rate. In this paper, we compare fine-tuning to alternative
retraining techniques. Weight rewinding (as proposed by Frankle et al. (2019)),
rewinds unpruned weights to their values from earlier in training and retrains
them from there using the original training schedule. Learning rate rewinding
(which we propose) trains the unpruned weights from their final values using
the same learning rate schedule as weight rewinding. Both rewinding techniques
outperform fine-tuning, forming the basis of a network-agnostic pruning algorithm
that matches the accuracy and compression ratios of several more network-specific
state-of-the-art techniques.
[Renda, ICLR, 2021]

Turns out we never had an agreement about even the most basic concepts!

Why the trap is so covert?

Using the same setting for different pruning ratios? Not very correct

At different sparsity levels, the trainability is damaged to different
degrees. The hyper-parameters (esp., fine tuning LR and epochs) should
be adjusted accordingly.

EX CM_vs_L1__resnet56__cifar10.sh

--method L1 --index_layer

--method L1 --index_layer

--method L1 --index_layer

--method L1 --index_layer

--method L1 --index_layer

--method L1 --index_layer

name_matching --stage_pr
name_matching --stage_pr
name_matching --stage_pr
name_matching

--stage_pr

name_matching --stage_pr

name_matching

--stage_pr

Bl GReg-2__resnet50__imagenet.sh

*xlayerx.

*layerx.

*layerx.

*layenrx.

*layerx.

*layerx.

B3 L1__resnet34__imagenet100.sh

convl:0.1 --project L1__resne

convl:0.3 --project L1__resne

convl:0.5 --project L1__resne

convl:0.7 --project L1__resne

convl:0.9 --project L1__resne

convl1l:0.95 --project L1__resng

Conclusion

Summary of this paper:
e \We are motivated by the two mysteries in network (filter) pruning.
e Sort out the comparison setups for later experimenting under a strict control.
e Unveil the two mysteries: M2 — M1
e Trainability is the key to unveil M1.
Takeaways:
e |Why is the state of neural network pruning so confusing? (1) Non-standard comparison setups (2)
Unawareness of the role of trainability.
Which comparison setup should | choose? >=S3.2.
Reporting all finetuning details are necessary and should be standardized!
The observation that a larger fine tuning LR “improves” pruning performance is largely a misinterpretation.
L1-norm pruning is pretty strong!
The term finetuning is not suitable.

Thanks! Questions?

Code:
https://github.com/mingsun-tse/why-the-state-of-pruning-so-confusing

