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Background

* Neural scaling laws: show the dependency between the error rate of
a model and the amount of training data (or model size or compute).

* Recent works show neural scaling laws follow a power law:
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Problem Statement and Motivation

* For Iarge vision transformers: an A : Perceptron in teacher-student setting
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Data Pruning Method

* The authors suggest to train the model with a
fraction of hard examples not easy examples

 How to define easy and hard data point
e Easy: large margin
* Hard: small margin

* The idea is based on teacher and student setup

» Leverage a pre-trained teacher to guide student
model.

» Teacher is well-trained
» Student is only trained a few epoch and under-trained

Student Teacher

Margin of one sample is defined as
difference between the distance to
different decision boundary
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Important Conclusion 1

* The best pruning strategy depends on the amount of initial data

Perceptron in teacher-student setting

1.5
Keep hard
0.8 examples - 1.0
- 0.5
0.6
- 0.0
0.4
Keep easy
xampl
W examples

10° 10!
Total examples per parameter (Xtot)

Joe

piey dooy

Frac. data kept

©
0

©
o

o
s

0.2

ResNet18 on CIFAR-10

Keep hard
examples

Keep easy
examples

104
Total examples

Joe

piey dasy

d
*5op -

| I
© 9o
o o
~ N

)

e



Important Conclusion 2

* Optimal pruning results into an exponential scaling law: Only if we
can apply optimal pruning.
A s Perceptron in teacher-student setting
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Important Conclusion 3

* An imperfect pruning metric yields a cross over from exponential to
power law scaling

Perceptron in teacher-student setting
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Problem: How to pruning no labeled dataset

e Without labeling, how to define hard or easy samples?
* Solution:

Input space embedding space
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Experiment
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