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Background: 3D Object Detection
Sensors:

Camera: RGB-Depth, LiDAR: Light Detection 
And Ranging, Radar: Radio Detection and 
Ranging

2D vs 3D:

3D: 7 Degrees of freedom (DoF) ~ 9 DoF

Center [x, y, z] + Object Size [length, width, 
height] + Rotation: [yaw, roll, pitch]

2D: 4 DoF 

Center [x, y] + Object Size [width, height]
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Background: 3D Object Detection Methods
Point-based method:

Directly processing the point clouds using deep learning networks to classify and regress objects. This method has gained 
popularity due to its ability to handle the irregularity and sparsity of point cloud data. PointNet, PointNet++, and Frustum 
PointNets are some of the popular point-based methods used for 3D object detection.

Grid-based method:

The grid-based method converts the point cloud data into a 3D grid structure, where each cell in the grid represents a 
voxel. The presence of an object within a voxel is determined by the number of points falling inside the voxel. The grid-based 
method allows for the use of 2D and 3D convolutional neural networks (CNNs) for object detection, making it 
computationally efficient. Some popular grid-based methods include VoxelNet and SECOND.

Graph-based method:

The graph-based method converts the point cloud data into a graph structure, where each point is represented as a node in 
the graph, and the edges between the nodes represent their spatial relationships. The graph-based method uses graph 
neural networks (GNNs) to process the graph structure for object detection. The graph-based method is effective in 
detecting objects with complex and irregular shapes, making it suitable for various applications. 
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Background: Knowledge Distillation

Knowledge Distillation is a technique in deep learning where a smaller neural network, called 
the student, is trained to mimic the behavior of a larger, more complex neural network, called 
the teacher. The goal is to transfer the knowledge and generalization power of the teacher 
network to the student network, making it more compact and computationally efficient. 6



Contributions:
1. First, the authors study how to obtain lightweight student detectors with satisfactory efficiency and 

accuracy trade offs given a pre-trained teacher 3D object detector.

2. Second, the authors empirically investigate the effectiveness of existing knowledge distillation methods 

on this new setting upon accurate teacher models and efficient student models.

3. Third, the authors propose simple, general, and effective strategies to improve knowledge distillation 

on 3D object detection upon the strong KD baseline derived as above.

4. Finally, the authorsʼ empirical studies on efficient model design and knowledge distillation methods 

yield superior performance in delivering efficient and effective pillar- and voxel-based 3D detectors.
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Teaser Results
Teacher Model: CP-Voxel, CP-Pillar

Best performing student model: CP-Voxel-S

Most efficient pillar-based model: CP-Pillar-v0.64

Baselines: SECOND, PointPillar
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Designing Efficient Student Networks
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Basic Setups and Evaluation Metrics
Models: CenterPoint-Pillar (CP-Pillar) and CenterPoint-Voxel (CP-Voxel) [CVPR 2021]

Dataset: on the largest annotated 3D LiDAR perception dataset Waymo Open Dataset (WOD)

Metrics: 

● number of parameters, flops, activations, latency (i.e. test time) and peak GPU training 
memory (batch size 1) as quantitative indicators to evaluate model efficiency from 
parameter, computation and memory throughout aspects

● LEVEL 2 mAPH as the performance evaluation metric following WOD

Quantitative indicator: Cost Performance Ratio (CPR)
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Acceleration Strategy

● Model compression:
○ Trimming along depth (i.e.number of layers) or width (number of channels)
○ 3 major modules: Pillar Feature Encoding (PFE) module, Bird eyeʼs view Feature Encoding (BFE) 

module and detection head
● Input resolution compression:

○ Increase the voxel/pillar size on the x-y plane when constructing voxel/pillar
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Model compression results

● Width vs. depth compression: width-level pruning is preferred
● Module-wise pruning selection: PFE module has the least redundancy to be reduced
● Favorable compression strategies for different detection architectures: pillar-based 

architecture (i.e. CP-Pillar) is more suitable for input compression while voxel-based 
architecture (i.e. CP-Voxel) prefers width level compression. 12



Input resolution compression results

By halving the input resolution, the computation overhead for 2D convolution layers in the BFE module and detection head 
will be reduced to ¼

Favorable compression strategies for different detection architectures: pillar-based architecture (i.e. CP-Pillar) is more 
suitable for input compression while voxel-based architecture (i.e. CP-Voxel) prefers width level compression 13



Benchmark Knowledge Distillation for 
3D Object Detection
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Benchmark Knowledge Distillation for 3D Object Detection

Benchmark seven popular 2D KD methods including logit KD (i.e. KD and GID-L), 
feature KD (i.e. FitNet, Mimic, FG and GID-F) and label KD on six teacher-student pairs 
with comprehensive analysis. 15



Logit KD

Takes teacher modelʼs final response as guidance for training a student network and is 
closely related to the specific task. In 3D object detection, we calculate the logit KD loss 
between teacher and student outputs as follows:
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where superscripts s and t indicate student and teacher, pcls and preg represent the classification 
response after the sigmoid and bounding box regression prediction of detector separately, κ is the 
bilinear interpolation to match student output resolutions towards teacher, Lreg is the regression loss 
function of 3D detector and mcls is a mask ranged in [0, 1] to indicate important regions in pcls.



Feature KD

Enforces student models to mimic teacher modelsʼ intermediate feature maps. 
Specifically, we construct feature mimicking on the last layer of BFE between student 
and teacher network as follows:
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where y is the ground truth, ψ indicates the RoI Align, φ is a 1 × 1 convolution with batch normalization 
and ReLU block to align channel-wise discrepancy between teacher feature ft and student feature fs, 
mfeat is the mask to indicate critical regions ranged in [0, 1].



Label KD
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Training Objective

Combination of three stream KD techniques as follows:
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Results and Analysis

● Feature-based KD methods (i.e. Mimic and FG) achieve prominent performance, which 
demonstrates the strong potential of learning from teacherʼs hints on feature extraction.

● Furthermore, we find that instance-aware local region imitation is important in distillation 
for 3D detection, as enormous background regions overwhelm the supervision of sparse 
instances. For instance, with instance-aware imitation, Mimic, FG and GID-F consistently 
outperform FitNet which fully imitates all spatial positions of teacher feature maps. 
Similar conclusions can also be drawn in logit KD by comparing the results of 
instance-aware GID-L and vanilla KD. 20



Synergy Analysis
Although feature KD itself achieves the highest 
performance on CP-Voxel-XXS compared to logit KD and 
label KD techniques, it can hardly achieve 
improvements or even suffers from performance 
degradation when combined with other KD methods. 
On the contrary, logit KD and label KD can cooperate 
well with each other to further improve studentʼs 
capability. 

This is potentially caused by logit KD and label KD 
implicitly enforcing regularization on the feature, which 
can be conflicted with the optimization direction of 
feature KD and results in a poor synergy effect.
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Improved Knowledge Distillation for 3D 
Object Detection
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Pivotal Position Logit KD

Motivated by the imbalance of foreground and background regions, previous 2D 
methods attempt to only enforce output-level imitation on pixels near or covering 
instances.

However, we find that it is sub-optimal in 3D scenarios given more extreme imbalance 
between small informative instances and large redundant background areas. For 
example, based on CP-Pillar, even a vehicle with 10m length and 4m width occupies 
only 32 × 13 pixels in the final 468 × 468 response map. Such small instances and large 
perception ranges in 3D detection requires more sophisticated imitation region 
selection than previous coarse instance-wise masking manners in 2D detection. 
Hence, we propose Pivotal Position (PP) logit KD which leverages cues in teacher 
classification response or label assignment to determine the important areas for 
distillation.
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Teacher Guided Initialization

Directly use the trained weights of teacher to serve as the initialization of student 
network, named teacher guided initialization (TGI) to enhance student modelʼs feature 
extraction abilities by inheriting it from a teacher model.
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Main Results and Comparison

The improved KD pipeline consistently surpasses previous KD strategies on all settings 
with 0.7% ∼ 1.9% improvement, thanks to our enhanced logit KD and more 
collaborative TGI.
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Comparison with Other Detectors

With similar latency and much fewer 
parameters, flops as well as activations, 
CP-Voxel-XS outperforms SECOND by 7.6%. 
Our CP-Pillar-v0.64, is 2.4× faster than 
PointPillar on a GTX-1060 while achieves 
1.8% higher performance.
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Cross Stage Distillation

However, despite performance improvements by 3.5%, PVRCNN++ requires around 2.2× 
parameters, 1.8× activations and 3.5× latency compared to CP-Voxel.

Leveraging hints from pretrained PVRCNN++, our distilled CP-Voxel achieves around 1% 
performance gains without any extra computation and parameter overheads during 
inference.
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Generalization to More Scenarios
Generality on Other Dataset and Detector
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Generalization to More Scenarios
Generality on Advance Compression Manner
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Conclusion

● Examined the potential of knowledge distillation to serve as a generic method 
for obtaining efficient 3D detectors with extensive experimental results and 
analysis.

● Found that pillar-based detector prefers input compression while voxel-based 
detector is more suitable for width compression in designing efficient student 
models. Besides, we proposed pivotal position logit KD and teacher guided 
initialization for enhancing the 3D KD pipeline. 

● The best performing detector outperforms its teacher with 2.4× fewer flops and the 
most efficient detector is 2.2× faster than previous fastest voxel/pillar-based 
detector PointPillars on an NVIDIA A100 with higher performance.
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