

Reversible Vision Transformer Mangalam et al., CVPR'22

Presenter: Kai Zhang kaz321@lehigh.edu

Motivation & Idea

TL;DR: Break <u>Memory Wall</u> via trading compute for memory through re-computation.

Memory Cost Analysis

[1] Sohoni, Nimit Sharad, et al. "Low-memory neural network training: A technical report." arXiv preprint arXiv:1904.10631 (2019).

x_1

x 2

x 3

Backprop without Storing Activation

Each layer's activations can be **Reconstructed** exactly from next layer's.

$$y_1 = x_1 + \mathcal{F}(x_2)$$

 $y_2 = x_2 + \mathcal{G}(y_1)$ non-invertible $x_1 = y_1 - \mathcal{F}(x_2)$

[2] N. Gomez et al. "The Reversible Residual Network: Backpropagation Without Storing Activations." NIPS (2017).

Vanilla v.s. Reversible Backprop

Activation Caching

Without Caching

Reversible Transforms in ViT

TL;DR: Adapting ViT to **<u>Two-Residual-Streams</u>**.

Dimension change hinders the reversible transformation.

12

11

Multiscale Vision Transformer (Fan et al., CVPR'21)

Rev-MViT

stage	operators	output sizes		
data		224×224		
cubification	$7 \times 7,96$ stride 4×4	96×56×56		
Stage-Preserving	$\begin{bmatrix} \mathbf{F} : MHPA(96) \\ \mathbf{G} : MLP(384) \end{bmatrix} \times 1$	$\left[\begin{array}{c} Y_1 : 96 \times 56 \times 56\\ Y_2 : 96 \times 56 \times 56 \end{array}\right]$		
Stage-Transition	FUSION(192) MHPA(192) MLP(768)	192×28×28		
Stage-Preserving	$\begin{bmatrix} \mathbf{F} : \mathbf{MHPA}(192) \\ \mathbf{G} : \mathbf{MLP}(768) \end{bmatrix} \times 1$	$\left[\begin{array}{c}Y_1:192\times28\times28\\Y_2:192\times28\times28\end{array}\right]$		
Stage-Transition	FUSION(384) MHPA(384) MLP(1536)	384×14×14		
Stage-Preserving	$\begin{bmatrix} \mathbf{F} : \mathbf{MHPA}(384) \\ \mathbf{G} : \mathbf{MLP}(1536) \end{bmatrix} \times 10$	$\left[\begin{array}{c}Y_1:384\times14\times14\\Y_2:384\times14\times14\end{array}\right]$		
Stage-Transition	FUSION(768) MHPA(768) MLP(3072)	768×7×7		
Stage-Preserving	$\begin{bmatrix} \mathbf{F} : \mathbf{MHPA}(768) \\ \mathbf{G} : \mathbf{MLP}(3072) \end{bmatrix} \times 1$	$\left[\begin{array}{c}Y_1:768\times7\times7\\Y_2:768\times7\times7\end{array}\right]$		

Not reversible, we have to cache the activation.

(b) Stage-Transition Rev-MViT Block

Experimental Results

TL;DR: Performance, Memory Efficiency, Speed.

Results

ImageNet-1K Classification

model	Acc	Memory (MB/img)	Maxiumum Batch Size	GFLOPs	Param (M)
ResNet-101 [29]	76.4	118.7	112	7.6	45
ResNet-152 [29]	77.0	165.2	79	11.3	60
RegNetY-4GF [58]	80.0	101.1	136	4.0	21
RegNetY-12GF [58]	80.3	175.2	75	12.1	51.8
RegNetY-32GF [58]	80.9	250.2	46	32.3	32.3
Swin-T [48]	81.3	-	-	4.5	29
ViT-S [63]	79.9	66.5	207	4.6	22
Rev-ViT-S	79.9	8.8 ↓7.5×	1232 ↑ 5.9×	4.6	22
ViT-B [63]	81.8	129.7	95	17.6	87
Rev-ViT-B	81.8	17.0 ↓ 7.6 ×	602 <u>↑6.3</u> ×	17.6	87
RegNetY-8GF [58]	81.7	147.2	91	8.0	39
CSWin-T [14]	82.7	-	-	4.3	23
Swin-S [48]	83.0	-	-	8.7	50
ViT-L	81.5	349.3	26	61.6	305
Rev-ViT-L	81.4	22.6 ↓15.5×	341 ↑13.1×	61.6	305
MViT-B-16 [18]	82.8	153.6	89	7.8	37
Rev-MViT-B-16	82.5	66.8 ↓2.3×	157 ↑1.8 ×	8.7	39

model	top-1	Mem (GB)	Max BS	GFLOPs× views	Param
Two-Stream I3D [5]	71.6	-	-	$216 \times NA$	25.0
R(2+1)D [66]	72.0	-	-	152×115	63.6
Two-Stream R(2+1)D [66]	73.9	-	-	304×115	127.2
Oct-I3D + NL [8]	75.7	-	-	28.9×3×10	33.6
ip-CSN-152 [65]	77.8	-	-	$109 \times 3 \times 10$	32.8
SlowFast 4×16, R50 [19]	75.6	-	-	36.1 × 30	34.4
SlowFast 8×8, R101 [19]	77.9	-	-	106×30	53.7
SlowFast 8×8 +NL [19]	78.7	-	-	116×3×10	59.9
ViT-B-VTN-IN-1K [52]	75.6	-	÷	4218×1×1	114.0
ViT-B-VTN-IN-21K [52]	78.6	-	-	$4218 \times 1 \times 1$	114.0
MViT-B-16, 16×4	78.4	1.27	10	70.5×1×5	36.6
Rev-MViT- B-16, 16×4	78.5	0.64	20	64×1×5	34.9

Kinetics-400 Video Classification.

MSCOCO Object Detection

Model	APbox	AP ^{mask}	Memory(GB)	GFLOPs	Param (M)
Res50 [28]	41.0	37.1	-	260	44
Res101 [28]	42.8	38.5	-	336	63
X101-64 [73]	44.4	39.7	-	493	101
PVT-L [69]	44.5	40.7	-	364	81
MViT-B	48.2	43.9	18.9	668	57
Rev-MViT -B	48.0	43.5	10.9	683	58

Ablation Study

The reversible models tend to have **<u>stronger inherent</u>** <u>regularization</u> than their non-reversible counterparts.

Training Improvement	Train Acc	Top-1 ImageNet Acc	
Naïve Rev-ViT-B	15.3	12.1	
+ Re-configuring residual streams	82.1	77.2	
+ Repeated Augmentation	84.9	80.6	
+ Lighter Augmentation magnitude	93.2	81.0	
+ Stronger Stochastic Depth	92.0	81.4	
+ Higher weight decay	91.0	81.8	
Rev-ViT-B	91.0	81.8	

(b) Stage-Transition Rev-MViT Block

(a) Activation caching and internal residuals.

(b) Training throughput vs. Model Depth

(c) Reversible training and maximum batch size.

allows <u>efficient computation</u> of the resolution downsampling and feature upsampling without repeat computation in each stream separately.

